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1 Introduction

The discrete-element approach is a key research tool for granular materials.
Given an appropriate model of the material in terms of particle shapes and
size distributions, mechanical properties and their interaction laws, the me-
chanical behavior (rheology) is a consequence of the collective dynamics of
the particles simulated by a discrete element method (DEM). Such simula-
tions give access not only to the macro-scale response to external loading
but provide also detailed information on the microstructure and its evolution.
However, the emerging behavior is all the more intrinsic to the material and
devoid of spurious effects as the numerical sample is homogeneous and large
in the number of particles. This corresponds to a homogeneous behavior of a
representative volume element (RVE) of the material. Note that since granu-
lar materials are characterized by a highly inhomogeneous microstructure and
dynamics at the particle scale, the homogeneity of a volume element should be
described in terms of the statistical representativity of micro-scale variables.

In practice, the number of particles is limited (below 105 for month-long sim-
ulations) by the available computation power and memory and thus the con-
ditions of homogeneity and representativity are not always fulfilled. Let us
consider, for example, a dense 3D sample of 50× 50× 50 mono-sized particles
confined in a cubic box. In this system, the mono-layer covering the internal
walls of the box contains ∼ 12% of particles. The packing fraction is generally
lower in the neighborhood of rigid walls and the wall-induced order propa-
gates into the bulk. Moreover, the distortion of the box by simple shearing
gives rise to strong arching effect at the corners of the box, generating thus
stress gradients over long distances inside the sample Thornton and Zhang
[2001]. Such effects arise also in experimental tests on granular materials, but
the number of particles in experiments is generally much higher. The wall ef-
fects are more critical in numerical simulations mainly as a result of the low
number of particles.
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Fig. 1. A two-dimensional simulation cell Ω with its basis vectors in an absolute

frame. A particle located at the right boundary interacts with the image of another

particle located at the left boundary.

The undesired effects of wall boundaries can be eliminated by means of peri-
odic boundary conditions. In this framework, the simulation domain becomes
a unit cell containing the particles with periodic copies paving the whole space.
The particles located at the borders of the simulation cell may then interact
with the image particles in a neighboring cell; figure 1. In this way, the pe-
riodic boundary conditions extend the system boundaries to the infinity so
that the simulation cell simply plays the role of a coordinate system to locate
particle positions Allen and Tildesley [1987]. The origin of the coordinates
being immaterial, the dynamics of the particles is invariant by translation and
therefore necessarily homogeneous.

With wall boundaries, the external stresses or displacements are applied on the
simulation box through wall degrees of freedom which are alternatively kept
free or frozen depending on whether a stress or a displacement is monitored
in a given space direction. With periodic boundary conditions, this role is
played by the collective degrees of freedom carried by the coordinate system,
whose basis vectors become dynamic variables, and their conjugate stresses
expressed as a state function of the granular configuration. This approach
was first formulated by Parrinello and Rahman by assuming a Hamiltonian
conservative system Parrinello and Rahman [1980]. With this formalism, the
particles can be subjected to arbitrary homogeneous loadings. The simulation
cell evolves with the particles and may change its shape and volume.

We present here a method for the prescription of periodic boundary condi-
tions in DEM simulations of granular materials. This method is similar in
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practice to that of Parrinello and Rahman, but since the particle interactions
are dissipative in a granular system, the equations of motion for collective
dynamic variables can not be based on a Hamiltonian. We consider in detail
the particular kinematics of periodic systems, the equations of dynamics and
time-stepping schemes for MD-DEM and CD-DEM.

2 Kinematics

2.1 Periodicity in position

Let us consider a collection of Np particles with their centers contained in
a cell Ω of volume V . The cell can have any shape allowing for a periodic
tessellation of space. The simplest shape is a parallelepiped (triclinic) in 3D
or a parallelogram in 2D. Other shapes such as rhombic dodecahedron in 3D
and hexagon in 2D are equally possible Allen and Tildesley [1987]. The cell
Ω and its replicas define a regular lattice characterized by its basis vectors
(~a1,~a2,~a3). In the case of a parallelepiped, the basis vectors may simply be
the three sides of the parallelepiped; figure 1. The origin O of the simulation
cell is a vertex of the cell of coordinates (0, 0, 0) and its replicas are defined
by three indices (i1, i2, i3) corresponding to a translation of the origin by the
vector i1 ~a1 + i2 ~a2 + i3 ~a3. Then, the coordinates ~r(i′) of the image i′ of a
particle i ∈ Ω of coordinates ~r(i) are given by:

~r(i′) = ~r(i) +
3

∑

k=1

ik ~ak (1)

The particles belonging to the cell Ω, characterized by i1 = i2 = i3 = 0, can
interact with the particles of the same cell but also with image particles in
the neighboring cells characterized by ik ∈ {−1, 0, 1}. There are 3D − 1 cells
surrounding the simulation cell and they are involved in the search of contact
partners for each particle. The distance between two particles i et j ∈ Ω is
the shortest distance separating i from j or from one of its images j′. As the
system evolves in time, a particle i may leave Ω but one of its images i′ enters
Ω at the same moment. In order to keep all original particles in the cell Ω,
the status “original” should be reserved to the particles whose centers belong
to Ω. Hence, whenever a particle i leaves the simulation cell, it becomes an
image of i′ which then becomes origial. This means that, a particle crossing a
border of the simulation cell, returns to the cell by crossing another border.
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2.2 Reduced coordinates

The particle positions can be represented in terms of the basis vectors {~ak}:

~r(i) =
3

∑

k=1

sk(i)~ak = h~s(i) (2)

The components of ~s(i) define the reduced coordinates of particle i. For the
original particles, these coordinates range from 0 to 1, corresponding thus to
a point in a unitary cube. The matrix h transforms reduced coordinates ~s(i)
into absolute coordinates ~r(i). The three columns of h are simply the three
components of the basis vectors: hkl = (al)k.

Equation (2) shows that the position vector ~r(i) of a particle i can change
either as a result of the variation of basis vectors {~ak} or due to the evolution
of reduced coordinates sk(i). In the first case the variation is homogeneous as it
affects the positions of all particles in the cell whereas the second case affects
only the particle i. To distinguish these two contributions, we differentiate
equation (2) with respect to time:

~̇r(i) = ḣ~s(i) + h ~̇s(i) ≡ ~u(i) + ~v(i) (3)

The affine velocity field ~u(i) ≡ ḣ~s(i) represents a homogeneous deformation
of the whole set of particles. On the contrary, the velocity field ~v(i) ≡ h ~̇s(i) is
non-affine and describes the proper (or fluctuating) velocities of the particles
with respect to a background of homogeneous deformation. Since the homo-
geneous deformation is carried only by the field ~u(i), the average value of the
fluctuating part ~v(i) must be zero. Hence, we have

〈~̇s〉 =
1

Np

Np
∑

i=1

~̇s(i) = 0 (4)

The reduced coordinates can be used to manage the image particles. From
the relations (2) and (1) one gets the following relation between the original
reduced coordinates and their images:

sk(i
′) = sk(i) + ik (5)

Therefore, the reduced coordinates of the image particles in the neighboring
cells are simply obtained by unit translations along the three space directions
k = 1, 2, 3.
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2.3 Periodicity in velocity

Driving equation (5) with respect to time, we see that the reduced velocities
are periodic:

ṡk(i
′) = ṡk(i) (6)

As a consequence, the no-affine velocities are strictly periodic:

~v(i′) = h ~̇s(i′) = h ~̇s(i) = ~v(i) (7)

By definition, the affine velocities are non-periodic. Indeed, we have

uk(i
′) =

∑

l

ḣkl sl(i
′) =

∑

l

ḣkl (sl(i) + il) = uk(i) +
∑

l

ḣkl il (8)

For the calculation of relative velocities at the contact point between an orig-
inal particle and an image particle, one should thus take this affine transfor-
mation of the velocities into account.

The velocity gradient tensor L̇ in the simulation cell Ω derives from the affine
field ~u(i). By definition, we have

~u(i) = ḣ~s(i) ≡ L̇~r(i) = L̇ h~s(i) (9)

whence

L̇ = ḣ h−1 (10)

and the strain-rate tensor ε̇ is the symmetric part of L̇ given by

ε̇ =
1

2
(L̇+ L̇T ) (11)

where L̇T represents the transpose of L̇.

The antisymmetric part (L−LT )/2 corresponds to rigid rotations of the cell Ω
and its replicas. However, these rotations are immaterial for a periodic system.
Therefore, at least three elements (over nine) of the tensor L̇ should be fixed.
For example, without loosing generality in the deformations of the simulation
cell, the basis vectors ~a1 and ~a2 can be forced to remain on the plane z = 0 and
~a3 on the plane y = 0, so that h13 = h23 = h32 = 0. Another solution consists
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in canceling the antisymmetric part by imposing the velocity gradient tensor
to be symmetric L̇ = ε̇. This implies the symmetry of the matrix h Nosé and
Klein [1986, 1983].

2.4 Mteric tensor

In addition to the particle degrees of freedom, a granular system with periodic
boundary conditions has collective degrees of freedom represented by the ma-
trix h. We have seen that the strain-rate tensor ε̇ (as well as the cumulative
deformation tensor ε =

∫

ε̇ dt) plays in practice the same role and can thus be
used to represent the collective degrees of freedom. Another useful variable is
the metric tensor g defined by

g ≡ hT h (12)

This tensor is symmetric and its diagonal elements describe the lengths of
the three basis vectors whereas its off-diagonal elements describe the angles
between those vectors Souza and Martins [1997].

The “metric” character of the tensor g is related to the fact that the distance
|~r(i)− ~r(j)|2 between two particles i et j is given by

|~r(i)− ~r(j)|2 = {~r(i)− ~r(j)}T {~r(i)− ~r(j)} = {~s(i)− ~s(j)}T g {~s(i)− ~s(j)}(13)

This means that the periodic system may be described by the reduced coor-
dinates ~s(i) of the particles moving in a space with the metrics g. This rep-
resentation of the system is strictly equivalent to the representation in terms
of absolute coordinates ~r(i) of the particles and the matrix h considered as
independent degrees of freedom. The matrix h and the metric tensor g change
with the particle configuration according to the equations of dynamics, which
will be discussed in section 3.

2.5 Modular transformations

For a given configuration {~r(i)} of the particles with their images, the matrix h
allows us to define the reduced coordinates ~s(i) = h−1 ~r(i). But the definition
of the simulation cell Ω, and thus that of h, is not unique. One example is
displayed in figure 2 where by moving a subset of particles ∈ Ω parallel to −~a1,
one obtains a new cell Ω′ of the same volume as Ω and containing exactly one
image of each particle. The replicas of the new cell Ω′ tesselate the space as do
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Fig. 2. Modular transformation of the cell defined by the vectors {~a1,~a2} into an-

other cell defined by the vectors {~a′1 = ~a1,~a
′

2 = ~a2 − ~a1}.

those of Ω. The basis vectors in this “modular” transformation change from
{~a1,~a2} to {~a1,~a2 − ~a1}.

The modular transformation, denoted by TΩ′/Ω, is linear:

h′ = TΩ′/Ωh (14)

The basis vectors of the matrix h may be modified by T in the course of
simulation provided the velocities ḣ are modified, as well. In the example
of figure 2, we change from the matrix h = {~a1,~a2} et ḣ = {~̇a1, ~̇a2} to the
matrices h′ = {~a1,~a2 − ~a1} and ḣ′ = {~̇a1, ~̇a2 − ~̇a1}. These transformations
should conserve the velocities ~v(i). It is therefore necessary to recalculate the
reduced coordinates and their velocities for all particles: ~s′(i) = h′−1 ~r′(i)
et ~̇s′(i) = h′−1 ~v(i). The modular transformation may thus be seen as a re-
definition of original particles.

The modular transformation can be used to separate the collective dynamic
variables condensed in the matrix h from the graphical representation of the
simulation cell. In fact, h represents at the same time the shape of the sim-
ulation cell and collective variables of the system. But an original particle
is strictly equivalent to all its images so that the calculations can be per-
formed with the matrix h attributed to a cell Ω and the particles represented
in another cell Ω′ related to Ω by a modular transformation. For instance,
let us assume that the initial cell Ω is a rectangular parallelepiped of ba-
sis vectors h = {~a1,~a2,~a3}. Incremental plane shearing of the system in the
direction 1 transforms the cell into another parallelepiped Ω′ of basis vectors
h′ = {~a′1,~a

′

2~a
′

3} defined by ~a′3 = ~a3, ~a
′

1 = α~a1, ~a
′

2 = ν~a1+β~a2, that corresponds
to the elongations α and β along the directions 1 et 2, together with shearing
β along the direction 1. Obviously, the deformed cell Ω′ is the modular trans-
form of a cell Ω′′ characterized by h′′ = {~a′′1,~a

′′

2,~a
′′

3} with ~a′′3 = ~a3, ~a
′′

1 = α~a1,
~a′2 = β~a2. The particles can thus be represented in the rectangular box Ω′′ by
applying the modular transformation TΩ′′/Ω′. In other words, the calculations
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are performed with h but the particles are represented in the rectangular cell
Ω′′.

These boundary conditions for shearing are known as Lee-Edwards boundary
conditions Allen and Tildesley [1987], Peyneau and Roux [2008a,b]. As we shall
see in section 3, these limit conditions can be used alternatively with shear
stress or shear strain imposed. In the same way, the cell dimensions can be
fixed. In this case, considering the replicas of the simulation cell Ω′′, the Lees-
Edwards conditions are equivalent to rigid displacements of the neighboring
cells in the direction 2 at the rates ḣ12h22 and −ḣ12h22 on the opposite sides
of the central cell. This representation has the advantage of keeping the shape
of the simulation cell during shear. It should, however, be remarked that even
strong distortions of the cell are not harmful for the calculations as, in contrast
to wall boundaries, the particles located at the corners of the cell interact with
image particles and may freely leave the cell.

3 Dynamics

In this section, we consider the equations of motion for the particles and
collective degrees of freedom. The presented formalism is a generalization of
that of Parrinello et Rahman to dissipative systems Parrinello and Rahman
[1980]. We will introduce different writings of these equations that may turn
out to be more or less adapted to the numerical method employed.

3.1 Collective degrees of freedom

Let us consider in the first place the collective degrees of freedom hkl upon
which depends the velocity-gradient tensor L̇kl and affine velocities uk(i) =
ḣklsl(i). We assume that these variables are governed by the equations of
dynamics:

mh ḧkl = F(hkl) (15)

where mh is a fictive mass attributed to the collective variables and F(hkl) rep-
resents the “generalized force” associated with hkl. These generalized forces are
conjugate variables of hkl in the sense that the rate Ẇ of the work consumed
by these forces is

Ẇ =
∑

kl

ḣkl · F(hkl) (16)
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In order to determine F(hkl), we may exploit the duality between the velocity-

gradient tensor and stress tensor defined over the simulation cell. Since L̇ is
an Eulerian tensor, its conjugate variable is the Cauchy stress tensor σ, which
is also an Eulerian tensor. By definition, the power produced by the stresses
per unit volume is the scalar product of these tensors:

Ẇ = V L̇: σ (17)

where V = det(h) = ~a1 ·~a2 ×~a3 is the volume of the simulation cell. Inserting
the expression of L̇ given by equation (10) in (17), and given the symmetry
of the stress tensor, we get

Ẇ = ḣ:V h−1σ (18)

This relation shows that V h−1σ is the conjugate variable of ḣ. Hence, accord-
ing to the definition (16), the generalized force is identified with

F(hkl) = V (h−1σ)kl (19)

and the equation of motion of h becomes

mh ḧ = V h−1σ (20)

Like the strain tensor, the stress tensor σ is uniform and periodic. In the same
way as the matrix h replaces the wall degrees of freedom, the tensor σ plays
the same role as the force resultants on the walls. It is the sum of two terms:
an external stress σext applied from outside the system and an internal stress
σint resulting from internal forces:

σ = σint + σext (21)

With periodic boundary conditions, the internal stress tensor σint should be
expressed from contact forces ~f and non-affine velocities ~v of the particles in
the simulation cell Ω. It is given by Savage and Jeffrey [1981], Goddard et al.
[1995], Bagi [1999]:

σint = nc〈ℓ⊗ f〉c + np〈mv ⊗ v〉p (22)

where nc is the number density of contacts (number of contacts per unit vol-
ume), np is the number density of the particles, m is the particle mass, and
~ℓ is the branch vector (joining the centers of two particles in contacts) The
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symbol ⊗ denotes the dyadic product. Written in terms of components, we
have

σint
kl =

1

V







Nc
∑

α=1

ℓl(α) fk(α) +
Np
∑

i=1

m(i)vk(i) vl(i)







(23)

where Nc and Np are the numbers of contacts and particles, respectively.

The first average in the expression (22) runs over all contacts α inside the cell.
It corresponds to the stresses of static origin related to mechanical equilibrium
of particles under the action of contact forces and moments. The second aver-
age runs over all particles i in the cell. This term is simply the expression of
the kinetic stress resulting from the momenta transported by the particles. It
should be remarked that the kinetic energy and stresses involve the non-affine
velocities ~v, which represent the particle velocities with respect to the average
velocity 〈~̇r〉 = 〈~u〉 = 〈ḣ〉~s. The affine velocities are involved in the advection
of particles and play no role in the internal dynamics of the system.

The equation of dynamics for h takes finally he following form:

mh ḧ = V h−1(σint + σext) (24)

with the expression of σint given by equation (22). Any desired mixed bound-
ary conditions can be applied through this equation to the simulation cell. For
example, for triaxial compression in the direction 3, we impose the compo-
nents σext

11 = σext
22 , the velocity ḣ33 and the off-diagonal terms ḣkl = 0 for i 6= j.

According to equation (24), the resolution of the equations of dynamics yields
σext
33 = −σint

33 , σ
ext
ij = −σint

ij for the off-diagonal terms, as well as h11 and h22

as a function of time. It is also possible to impose the invariants of the stress
or strain tensors in all space directons by combining the equations of motion
for different elements of h from equation (24) Radjai and Roux [2004].

3.2 Particle degrees of freedom

The Galilean invariance of a periodic system implies that the force resultants
~F (i) acting on the particles are strictly periodic and independent of affine
velocities ~u = ḣ~s. For this reason, stress gradients induced by the gravity
or other bulk forces can not be introduced in this approach. The conjugate
generalized velocities are thus the no-affine velocities ~v(i) of the particles and

the power produced by the force ~F (i) is given by Ẇ (i) = ~F (i) · ~v(i).

The equation of motion describes the motion of a particle following its trajec-
tory. This means that, as for a fluid particle, the velocity changes should be
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described by the so-called particulate or Lagrangian derivative. The particu-
late derivative D~v/Dt of the non-affine velocity ~v(i) is the sum of a “local”
derivative ∂~v/∂t of the velocity (at a given point ~r(i) of space) and an “ad-
vective” variation (~v · ∇)~u due to the space deformation:

~F (i) = m(i)
D~v

D t
= m(i)

∂~v(i)

∂t
+m(i)[~v(i) · ∇]~u(i) (25)

Remarking that, according to (9), ~u = ḣ~s = ḣ h−1 ~r = L̇~r and setting ~̇v =
∂~v/∂t, the equation of motion (25) is simply written

~F (i) = m(i)~̇v(i) +m(i)L̇~v(i) (26)

Given (2), the equation of motion can also be expressed in the following form:

~F (i) = m(i) ~̈r(i)−m(i) ḧ~s(i) (27)

This is a rather intuitive expression as it involves explicitly the acceleration
term m(i)ḧ~s(i) resulting from the collective degrees of freedom as an inertial
force acting on the particle. Combining with equation (24) for h, we get yet
another writing of the equations of motion which does not refer to the reduced
coordinates:

~̈r(i) =
1

m(i)
~F (i) +

1

mh
V h−1(σint + σext)h−1 ~r(i) (28)

As we shall see below, this is a convenient representation for an implicit inte-
gration scheme. It shows the coupling between the absolute degrees of freedom
~r(i) of the particles and the collective degrees of freedom via the second term
which is proportional to the stress and depends on h. We also note that the
product V (σint + σext) does not depend on h.

Since the periodic deformations of the system depend only on the particle
centers, the equations of dynamics for particles rotations are not affected by
periodic boundary conditions. The rotations ~ω(i) of the particles are thus
periodic and fully disconnected from the collective degrees of freedom. They
are governed by the usual equations of dynamics:

~τ (i) = I(i) ~̇ω(i) + ~ω(i)× I(i)~ω(i) (29)

where ~τ(i) is the resultant of force moments and torques acting on the particle
i, and I is the moments of inertia matrix.
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The mass mh attributed to the collective degrees of freedom in equation (28)
is an unphysical parameter. It can be compared to the wall masses when
the boundary conditions are walls or similar structures such as clumps of
particles. Since we want the dynamics to represent that of a large system, the
second term of the right-hand side of equation (28) should be small compared
to the first term which describes the dynamics of the particles under the
action of contact forces. This means that mh should be large with respect to
m(i). In particular, the relaxation time τ towards mechanical equilibrium is
proportional to the square root of the mass. Hence, if for the investigation of
rheology we search for a well-resolved dynamics of the particles, the collective
relaxation time controlled by mh should be larger that the relaxation time of
each particle controlled by its mass m(i) Agnolin and Roux [2007a,b].

4 Integration schemes

The equations to be solved are those of individual particles together with those
governing collective degrees of freedom. The integration scheme depends on
the numerical method and its variants. We briefly present in this section two
schemes for the two methods of contact dynamics and molecular dynamics,
respectively.

4.1 Contact dynamics

For the contact dynamics method, it is convenient to use the writings (28)
and (24) of the equations of motion. All the positions ~r, ~s and h are treated
explicitly, i.e. fixed during a time step, whereas the velocities vitesses ~̇r, ~̇s
and ḣ, the contact forces ~fα and the non-imposed elements of the tensor of
internal moments M ≡ V σ are determined through an iterative scheme. The
discretized form of the equations of motion over o,ne time step [t, t+ δt] is the
following:

ṙk(i)[t+ δt] =
1

m(i)
δt Fk(i)[t + δt] +

1

mh
δt P int

kl [t+ δt] rl(i)[t]

+Bk(i)[t] (30)

ḣkl[t+ δt] =
1

mh
δt h−1

km[t]M
int
ml [t+ δt] + ḣkl[t] (31)

ωk(i)[t+ δt] =ωk[t] + δt (I−1)kl(i) τl(i)[t + δt]

−(I−1)kl(i)(~ω(i)[t]× I(i)~ω(i)[t])l (32)

with
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M int
kl [t + δt] =

Nc
∑

α=1

fk(α)[t+ δt]ℓl(α)[t] +
Np
∑

j=1

m(j)vk(j)[t]vl(j)[t] (33)

P int
kl [t + δt] =h−1

kmM
int
mn[t + δt]h−1

nl (34)

P ext
kl [t + δt] =h−1

kmM
ext
mn [t + δt]h−1

nl (35)

Bk(i)[t] =
1

mh

δt P ext
kl [t] rl(i)[t] + ṙk(i)[t] (36)

where the Einstein convention for repeated symbols is assumed. Note that in
this scheme the kinetic term in the expression of Mint and the nonlinear term
of rotations are treated explicitly.

In the contact dynamics method, the equations of dynamics are expressed
(condensed) in the contact frames. The complementarity relations expressing
Signorini’s condition (between the relative normal velocity and normal force)
and Coulomb’s law of friction (between the relative tangential velocity at con-
tact and the fricton force) are also written in the contact frames Moreau [1994],
Jean [1995], Radjai and Richefeu [2009]. With periodic boundary conditions,
starting with equations (30) and (32), and iteration loop can be formed for
the simultaneous of forces and velocities. During this iterative process, the
internal moments tensor M is updated together with contact forces (the ki-
netic term kept constant during iterations). The only difference with the usual
equations of dynamics lies in the treatment of the term involving internal mo-
ments, which controls the propagation of information via the collective degrees
of freedom.

The iterative determination of contact forces ~fα[t + δt] and internal moment
tensor M int

kl [t+ δt] allows the calculation of velocities ṙk(i)[t+ δt], ωk(i)[t+ δt]
and ḣkl[t+ δt] with the help of the discretized equations of motion (30), (31)
and (32). The positions are updated from the velocities:

hkl[t + δt] =hkl[t] + δt ḣkl[t+ δt] (37)

rk(i)[t + δt] = rk(i)[t] + δt ṙk(i)[t + δt] (38)

θk(i)[t + δt] = θk(i)[t] + δt ωk(i)[t + δt] (39)

For the management of periodic boundaries, we need to update the reduced
positions and velocities according to the same implicit scheme:

ṡk(i)[t+ δt] = (h−1)kl[t] {ṙl(i)[t + δt]− ḣkl[t+ δt] sl(i)[t]} (40)

sk(i)[t+ δt] = sk(i)[t] + δt ṡk(i)[t + δt] (41)
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4.2 Molecular dynamics

The implementation of periodic boundary conditions in molecular dynamics
is rather straightforward. The equations of motion for the collective degrees
of freedom are treated like those of individual particles Allen and Tildesley
[1987], Peyneau and Roux [2008b], Agnolin and Roux [2007a]. For instance,
consider a Gear predictor-corrector scheme of order 3. The positions, velocities
and accelerations predicted for the free degrees of freedom are given by a Talor
expansion of order 3:

r
(p)
k (i)[t + δt] = rk(i)[t] + δt ṙk(i)[t] +

1

2
δt2r̈k(i)[t] (42)

ṙ
(p)
k (i)[t + δt] = ṙk(i)[t] + δt r̈k(i)[t] (43)

r̈
(p)
k (i)[t + δt] = r̈k(i)[t] (44)

In a similar vein, the collective degrees of freedom are expanded:

h
(p)
kl [t+ δt] = hkl[t] + δt ḣkl[t] +

1

2
δt2ḧkl[t] (45)

ḣ
(p)
kl [t+ δt] = ḣkl[t] + δt ḧkl[t] (46)

ḧ
(p)
kl [t+ δt] = ḧkl[t] (47)

The angular degrees of freedom are expanded in the same way:

θ
(p)
k (i)[t + δt] = θk(i)[t] + δt ωk(i)[t] +

1

2
δt2ω̇k(i)[t] (48)

ω
(p)
k (i)[t + δt] =ωk(i)[t] + δt ω̇k(i)[t] (49)

ω̇
(p)
k (i)[t + δt] = ω̇k(i)[t] (50)

Given the “predicted” positions and velocities, the force laws are used to cal-
culate the contact forces as well as the internal stress tensor σint and the
resultant forces and torques ~F (i) and ~τ (i) for the particles. The equations of
motion (28), (29) and (24) are then used to calculate the “corrected” accel-

erations r̈
(c)
k (i)[t + δt] and ḧ

(c)
kl [t + δt] which are generally different from the

predicted accelerations. This difference is used to correct the velocities:

ṙ
(c)
k (i) = ṙ

(p)
k (i) + κ δt {r̈

(c)
k (i)− r̈

(p)
k (i)} (51)

ω
(c)
k (i) =ω

(p)
k (i) + κ δt {ω̇

(c)
k (i)− ω̇

(p)
k (i)} (52)

ḣ
(c)
kl = ḣ

(p)
kl + κ δt {ḧ

(c)
kl − ḧ

(p)
kl } (53)
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Fig. 3. Example of a system simulated by the molecular dynamics method in 2D.

The simulation cell is deformed by simple shear with periodic boundary conditions.

The particles in the simulation cell et their images in a thin layer at the interface

with neighboring cells are displayed.

where κ is an adjustable coefficient for optimizing the convergence. The new
values of the velocities may be used to re-calculate the accelerations from the
force laws and this process is repeated until the velocities and accelerations
converge within a given precision. The calculated values of the variables are
attributed to the end of the time step t+ δt. In this fully explicit scheme, the
positions are determined by the expansion according to the equations (42), 45)
and (48), and they are therefore not concerned by this iterative process. The
positions and velocities of the reduced coordinates are then evaluated from
the new values of ~r(i) and h.

Figure 3 displays an example of a 2D system simulated by the MD method.
The simulation cell Ω and particle images in a thin layer are represented. The
velocity map is shown in figure 4 for simple shear simulation. The contact
interactions lead to a very inhomogeneous field which is periodic in its non-
affine part Radjai and Roux [2002]. Figure 5 shows the evolution of packing
fraction during a quasi-static cyclic shearing of amplitude ∆ε = 0.04. The ob-
served gradual compaction of the packing is a well-known property of granular
materials.

4.3 Implementation precautions

Some precautions are required for successful simulations with periodic bound-
ary conditions. The round-off numerical errors in collective variables are easily
amplified as they are directly reflected by the motions of all particles. For a
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Fig. 4. A map of particle velocities in the simulation cell and neighboring cells under

simple shearing with periodic boundary conditions.
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Fig. 5. Evolution of packing fraction during cyclic quasi-static deformation of a

sample simulated with periodic boundary conditions.

careful distinction between affine and non-affine velocities, it is important to
satisfy the condition 〈~̇s〉 = 0 in spite of such round-off errors. For example, the
simulation of uni-axial compaction in a given space direction under the action
of an applied stress leads to an equilibrium state with ḣ = 0 and ~u(i) = 0,
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but a uniform displacement field ~v(i) = h ~̇s(i)〉 6= 0. In fact, it can be checked
that the equation of motion (26) is compatible with this solution which is
a consequence of Galilean invariance of the system of equations. This effect
is undesirable for the analysis of the velocity field and it can be avoided by
using the comoving reference frame. In practice, it is equivalent to imposing
the conditions 〈~̇s〉 = 0 at every time step when updating the particle positions
and velocities.

The same problem is posed with respect to the rigid rotations of the system.
In fact, the stress tensor being symmetric, the antisymmetric part of the strain
tensor L̇ is immaterial. Therefore, it is necessary to fix three elements of the
strain tensor in 3D (one element in 2D). Another possible solution is to cancel
the antisymmetric part, which leads in turn to the symmetry of the matrix h.

5 Conclusion

The numerical simulation of granular materials with periodic boundary con-
ditions is primarily a methodology of producing macroscopically homoge-
neous strains. This approach eliminates the spurious surface effects resulting
from wall boundaries. In some cases, the rigid walls may also be replaced
by membrane-like walls and other flexible elements, or by direct application
of external forces and displacements on the boundary particles. The method
presented here is equivalent to the application of a homogeneous strain (affine
field) and the calculation of the deviations from a homogeneous strain for the
particles (non-affine field).

The periodic conditions eliminate also any non-periodic internal structure at
the scale of the simulation cell. If the typical size of such structures or the
correlation length of a microscopic quantity is beyond the linear dimension of
the simulation cell, the simulation will be partially influenced by finite size
effects. This means that, some particles may interact with their own images.
The interactions in granular media are of short range and confined basically to
contact interactions. But a granular material involves also mesoscopic struc-
tures induced by steric exclusions and rotation frustrations. The force chains
and collective particle motions are well-known manifestations of such struc-
tures Radjai and Roux [2002]. In the same way, periodic boundary conditions
eliminate non-periodic shear bands. Such bands are observed, for instance, or-
thogonally to the velocity gradient in simple shear Peyneau and Roux [2008b].
But their lifetime is quite short and they disappear upon averaging over a cu-
mulative deformation of 10%.

The implementation of periodic boundary conditions as presented here applies
to all space directions. But the same formalism may be applied also in one or
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two directions only. For example, a simulation cell may be periodic in the two
directions x and y but confined by two parallel walls in the direction z. In this
case, the formalism is restricted to the coordinates rx and ry of the particles
with the corresponding matrix h and its reduced coordinates. One may then
apply either a lateral confining stress or a lateral displacement. The case of
lateral imposed displacement is trivial, involving only periodicity in position.
This is a particular case of “passive” periodicity. But a general approach, as
the one presented in this paper, is required for the application of stresses.
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