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1 Introduction

Granular materials consist of densely packed solid particles and a pelling
material which can be a uid or a solid matrix. The particles interact viaelastic
repulsion, friction, adhesion and other surface forces. By nawirthe length
scales involved in these contact interactions are well below the paie size.
External loading leads to particle deformations as well as coopeira particle
rearrangements. The particle deformations are of particular imp@ance in
powder metallurgy, for example, but the particles may be considetes quasi-
rigid beyond the elastic response times.

The contact network and pore space are the two facets of the mostructure
of granular materials, to which we will refer agiranular texture At the particle
scale, the granular texture involves three basic vectors from whiother local
geometrical variables can be de ned: 1) théranch vector™  “n° joining
the centers of contacting particles, 2) the contact orientationector (contact
normal) 11 de ned as the unit vector normal to the particle boundary at the
contact zone and 3) the contact vectorsejoining the particle centers to the
contact point; see Fig. 1. The reaction forcelS and f~acting on two particles
at their contact zone have a unique application point which may be ceitered
as their contact point in the case of extended contacts such a é&face contact
between two polyhedral particles.

Two di erent local frames can be associated with a pair of contactgqparticles:
1) The frame de ned by the contact normah and two orthogonal unit vectors
(t;8) in the contact plane (tangent to the two particles at the contactpoint);

2) The frame de ned by the \radial" unit vector +° and two orthogonal unit
vectors (% <) in a orthoradial plane (orthogonal to the branch vector). Thes



Fig. 1. Local vectors at the contact between two particles 1 and 2 : branch vector
~, contact normal A, contact force f~ and contact vectors ¢

two frames coincide in the case of spherical particles. In 2D, the &drame
is uniquely de ned by a single tangent unit vectort or t°.

The granular texture is disordered with many di erent variants degnding on
the composition (particles shapes and sizes), interactions and assembling pro-
cedure. The granular disorder is essentially characterized by trect that, as a
result of geometrical exclusions among patrticles, the local vectorary discon-
tinuously from one contact to another. In other words, the locatnvironments
uctuate in space. The contact network evolves with loading so thiahe local
environments uctuate also in time. The highly inhomogeneous distriltion

of contact forces re ects granular disorder in static equilibrium.n particular,
the force chainsreveal long-range correlations whereas the presence of a broad
population of very weak forces results from tharching e ect. The force and
fabric anisotropies are two complementary aspects of stressrismission, and
they can be employed in local (particle-scale) description of granulaedia in
the quasi-static state.

The geometrical changes of granular texture are at the origin ofi¢ complex
rheology of granular materials. These changes are highly nonlinearyolv-
ing creation and loss of contacts, rotation frustration and frictioal sliding.
They depend on the dissipative nature of contact interactions ansteric ex-
clusions among patrticles. In quasi-static deformation, various fie@es of the
plastic behavior such as shear strength and dilatancy can be tracback to
the evolution of granular texture.

We introduce below several concepts and tools for the descriptioh granular
texture and kinematics with examples and illustrations from discretelement
simulations (molecular dynamics and contact dynamics). We rst caider
the description of granular texture in terms of particle positions ash contact
orientations. Then, the kinematics and mechanisms of plastic defoation are
analyzed.



2 Description of granular texture

The granular texture is generally described in terms of the distribins of
the vectorsf, ~and€associated with the local geometry. At the lowest order,
the relevant scalar parameters concern theonnectivity of this network. At
higher orders, the anisotropy of the texture is described bfabric tensors
Such de nitions rely either directly on the local vectors or on a partion of
the space occupied by the particles in terms of Voronoi cells or Deftay
tessellation.

2.1 Particle connectivity

The connectivity of a granular assembly refers to the set of forteearing (ac-
tive) contacts. A number of contacts do not participate in forceransmission.
These \inactive" contacts and \ oating" particles (with no active contact)
are generally removed from the statistics. The connectivity is dediged at the
lowest order by thecoordination numberde ned as the average numbeg of
contact neighbors per particle. This is a crude scalar information @®mpared
to the complex arrangement of the particles, but it is well known thisthe com-
pactness of the texture controls the stress-strain behavior dar monotonic
shearing. Remark that for particles of arbitrary shape (polygorse polyhedra,
...), di erent types of contact (edge-to-edge, face-to-facet@ exist, and they
can be distinguished by de ning a distinct coordination number for ezh type
of contact.

Fig. 3 shows the evolution ofz for two di erent packings during a biaxial
compression test performed by means of the contact dynamics thd as a
function of the cumulative shear strain"q = "; ", in 2D. The rst sample,
denoted S1, is composed of 14400 regular pentagons of three réinté diame-
ters: 50% of diameter 5 cm, 34% of diameter 5 cm and 16% of diameter 5
cm. The second sample, denoted S2, is composed of 10000 discsthétlsame
particle size distribution. Both samples were prepared by isotropi@mpaction
with zero friction. Hence, at the initial state, both numerical samfes are in an
isotropic stress state. The solid fraction isq = 0:80 for S1 and o = 0:82 for
S2. Figure 2 displays snapshots of the two packings at the beginnioigbiaxial
compression. The coe cient of friction during compression is:@ between the
particles and O between the walls and the particles. The coordinatioumber
evolves towards a steady-state value in both samples with a highewe for S2
(" 3:85)thanfor S1( 3:75). The di erence is, however, much less important
than in the initial con guration (' 3:95 for S2 compared td 3:20 for S1)
prepared by means of isotropic compaction (Azma et al. [2007]).



Fig. 2. Snapshots of a portion of the samples S2 (a) and S1 (bmposed of circular
and pentagonal particles, respectively.
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Fig. 3. Coordination number z as a function of cumulative shear strain" for two
samples S1 and S2 during a biaxial compression test simulateby the contact dy-
namics method.

The connectivity of the contact network can be characterized in are detail
by the proportion P(c) of particles with exactly_c contact neighbors. The
coordination number is the mean value of : z =, cP(c). The connectivity
P(c) of the particles is plotted in Fig. 4 for S1 and S2 aty = 0:3. The two
plots are nearly identical with a peak atc = 4. In both samples, the fraction
of particles with 5 contacts is higher than that with 3 contacts. Thisshows
that the connectivity does not re ect the di erence in texture bdween the
two packings although a qualitative di erence exists in terms of theabric
and force anisotropies (see below).

2.2 Contact network anisotropy: fabric tensors

The shear strength of dry granular materials is generally attribuig to the
buildup of an anisotropic texture during shear due to friction betwen the
particles and as a result of steric e ects depending on particle sheppand sizes
(Oda et al. [1980], Cambou [1993], Radjai et al. [2004]). Several metls have
been used to quantify the fabric (structural) anisotropy of granlar materials
(Satake [1982], Rothenburg and Bathurst [1989], Oda and Iwashi{a999],
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Fig. 4. Connectivity diagram for the samples S1 and S2 expresing the fraction P (c)
of particles with exactly ¢ contacts in the steady state.

Kanatani [1984]).

2.2.1 General case

Following Kanatani, let us consider a physical quantity carried by a $eof
unit vectors (Kanatani [1984]). These vectors may be contact noals f g or
branch unit vectors+° (unit vector along the branch vector) inside a granular
sample. Let us assume thalN measurements are obtained from this sam-
ple:fa®;  aMN) From these experimental values, we de ne an experimental
probability density function Pey, (1) which can be approximated by a theoret-
ical distribution P (). Since the vectorsA' are unit vectors, Pex, and P are
de ned on a unit sphere in 3D or a unit circIeRin 2D, denoted bys in the
following. By de nition, we have P(x) 0 and gP(n)d = 1. Remark also
that the contact orientations have no intrinsic parity, so thatP(x) = P( H).

The \best" theoretical approximation may be obtained by means athe least
square method which amounts to minimizing the function
z
E= fP(A) Pep(R)g’d 1)
S

with respect to the parameters involved in the de nition ofP(n). Let P be
expanded as a polynomial sum

P(Rn) = Co+ Cjnin; + Gy ninjngn; +h.o.t. (2)

where odd terms have been dropped due to the even parity®f In this form,
the function P is parametrized by the tensor€;;... of increasing order. It can be
shown that for an approximation of ordem, all terms of order belowm should
be omitted since they can be expressed through the higher-orderms. For
example, using the identity tensor , we can writeCj nin; = ( Cjj I \¢)nin;nyny,



sincelngn, = 1. Hence, the most general polynomial expression of order
is simply given by

P(f) = Cijipuig NigNiy ti10g, (3)
foriy, =1:2:.3in 3D andix = 1;2 in 2D. The minimization of E de ned
by equation [1] with the expression oP given by [3] leads to a linear set of

equations

A C=F 4)

where and design the collective indice$ijo:::jm andiqiz:::iy,, respec-

tively, with
Z
A = np Ni, 2N, njlnjz:::njmd (5)
S
and
Z
F = Pep(®nj,nj,:::n;,.d (6)

The tensorF is a symmetric tensor of ordem that represents the mean value
of the product nj,nj, :::n;

m*

F = i,ni,:oimg,i = = ninfronf (7)

" N

igi2:im

This tensor is often calledabric tensorof orderm. It is symmetric and involves
(m+1)(m+2)=2 andm+1 independent elements in 3D and 2D, respectively.
The fabric tensors contain all the relevant directional informatiorof the con-
sidered quantity in the space of contact orientations. Howeverhé intuitive
meaning of these tensors is not straightforward to grasp (Kanai [1984]).

An equivalent description of directional data is given by consideringhe fol-
lowing expansion in terms of deviatoric tensor® = C |

1
P(fR) = —f1+ Djnin; + Djq ninjngn; + h.o.t.g (8)

These tensors are fully symmetric, i.€D ... = D.j.., andtr(D) = 1.



2.2.2 Case of 2D data

For 2D data, the above tensors are de ned by two independent ebents, and
the expansion given in (8) is equivalent to a Fourier expansion

1 .
P(n)= 2—f1+ acos2 + bsin2 +
+ a,, cosan + by sin2n + h:o:tg (9)
where is the orientation of A(cos ; sin ). The coe cients a and hy represent

the anisotropy of the texture at di erent orders. If the Fourier expansion is
truncated beyond the second term, we have

1
P(n)= Cjnin; = 2—f1+ Dj ninjg (20)
with Cij = 4m| n; [ Iij and Dij = Cij I ij - If c is the orientation of the major

principal direction of D and a. the di erence between its principal values, the
second-order expansion d® can be written as

P(n) = 2i f1+ acos?2( 0 (11)

In this expression,a is the second-order fabric anisotropy. The above expres-
sion provides a reasonable approximation for a unimodal distributioaf the
data. Otherwise, higher-order anisotropies should be taken int@eount.

Equation 11 is related to the second-order fabric tensor by

z

F = 1 n()n()P()d n°n°; (12)

1 X
NC c2V

where and design the components in a reference frame, amNL is the
total number of contacts in the control volumeV. By de nition, tr(F) = 1.
The anisotropy of the contact network is given by the di erence beeen the
principal valuesF; and F; of F. It is easily shown that

a=2(F; F): (13)
For xed coordinates, with the x-axis pointing along a direction °, we can
also de ne a "signed anisotropy"a’ by

a®=2(F; Fy)cos2(. 9; (14)
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Fig. 5. Second-order approximation of the probability densty P ( ) plotted in polar

coordinates fora=0:5and .= =6.

Fig. 6. Polar representation of the probability density function P( ) of contact

normal directions

for the samples S1 and S2 in the steady state.
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Fig. 7. Evolution of the \signed" anisotropy a°with cumulative shear strain "q for
the samples S1 and S2.

where . is the major principal direction of the fabric tensor. For °= ., we
have a° = a. In polar coordinates, equation (11) has a \peanut" shape for
0 a. 1. Itisreduced to a circle in the limit of an isotropic set for which

a. = 0; see Fig. 5.

Figure 6 displays a polar representation d?( ) for the samples S1 and S2 at
"q = 0:3 (Azma et al. [2007]). We observe a nearly isotropic distribution for
the pentagon packing in spite of shearing whereas the disk packingriarkedly
anisotropic. The distribution is clearly unimodal and a (second-ordgFourier

expansion provides a good approximation.
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Fig. 8. Evolution of the coordination number z and \signed" anisotropy a° with
cumulative shear strain " for a loose sample and a dense sample in simple shear
and in reversed simple shear from the steady state.

The evolution of a°is shown in Fig. 7 as a function of, for S1 and S2. The
privileged direction of the contacts . is vertical in both packings. In both
cases@’increases from 0 (as a result of the initial isotropic compression) én
tends to a steady value at large strains. The low anisotropy of theeptagon
packing results from a particular organization of the force netwérin corre-
lation with the orientations of side-to-side and vertex-to-side cdacts in the
packing.

The evolution of z and a°is shown in Fig. 8 for simple shear starting from a
loose sample, starting from a dense sample and during a reversedpsenshear
from the steady state, for a 2D system of disks (Radjai and Roy2004]). We
see that bothz and a evolve during the transients (at the beginning of shear
where the material is in an isotropic state and in the transient followig shear
reversal). Interestingly, shear reversal causes initially to decrease before the
steady state is reached again in the opposite direction with the sihastate
value ofz.

2.2.3 Case of 3D data

The probability density P (1) of unit vectors t1 can be expanded according to
equation 10. This expansion in 3D at leading order is equivalent to a negsen-
tation of the data in terms of spherical harmonics (Ouadfel and Rlbenburg
[2001], AZma et al. [2008]). LetA (19 be the set of branch vectors pointing in
the direction ®° (; ) up to a solid angled, and N(#®9 its cardinal. The
angles and are shown in Fig. 9. By de nition, we have

N ()

P() = N

(15)

We consider here axisymmetric (symmetry by revolution) conditionss in a
classical triaxial test. Then, the functionP (9 is independent of . There are



Fig. 9. Spherical coordinates.

nine second-order basis functiong! (; ). But only the functions compatible
with the symmetries of the problem, namely independent with respeto  and

-periodic as a function of , are admissible under axisymmetric conditions.
Hence, the only admissible functions ar¥? = 1 and Y, = 3 cos 1, and
we have

P(HR% = 4if 1+ a[3cod( b 1]g (16)

wherea is the anisotropy of branch vector orientatigns and,, their privileged
orientation. The function P (®% is normalized to 1 (g P(®9d = 1). We will
refer to this expansion at leading order in spherical harmonics asgtharmonic
approximation.

Figure 11 shows a polar representation & (1% for two samples of polyhedra
(S'1) and spheres (S'2) subjected to triaxial compression by mesanof contact
dynamics simulations. The two samples are displayed in Fig. 10. The trs
sample (S'1) is composed of 36933 polyhedra of irregular shape invavat
least 12 faces and 8 vertices and at most 70 faces and 37 vertidés second
sample (S'2) is composed of 19998 spheres with exactly the same digti-
bution as in S'1. During triaxial compression, the coe cient of friction is 05
between the particles and 0 with the walls. The harmonic approximatiois
well t to the distribution P (®% for both sheared samples. It is remarkable
that the anisotropy is lower for polyhedra compared to spheres.

2.3 Branch vectors

In the last section, we considered the fabric tensors construdtdrom the
branch vectors™ 1% The branch vector lengths’ can be characterized by
their probability density function P;(xv%) and their angular average function
hi (8% de ned by

1 X

i (ﬁ() i Ne(r) C2A (rO) ) e
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Fig. 10. Snapshots of the two packings S'1 (polyhedra) and 8' (spheres) simulated
by the contact dynamics method. The walls are not shown.
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Fig. 11. Polar representation of the density probability P (19 for S'1 et S'2 at the
sheared state. The solid lines are harmonic ts to the data pnts.

where A (19 is the set of branch vectors pointing in the directionr® (; )
up to a solid angled and N¢(#9 is its cardinal.

One example is shown in Fig. 12 for triaxially sheared samples of polyhad
and spheres as a function of the zenith angleof the branch unit vectors+°
(Azma et al. [2008]). The data points are tted by a harmonic expasion:

hi(r) = "nf 1+ a [3cod( D 19 (18)

where ", is the mean branch vector lengtha, is the branch vector length
anisotropy and ;| is the angle at which the largest distance between particle
centers occurs.

The value of a is generally weak. But it can become more important for
elongated or highly polydisperse particles. In Fig. 12, its value is abio@:1 for
polyhedral particles generated from spheres. An interesting behor recently
evidenced by numerical simulations is that the fabric anisotropg for branch

11



vector orientations of polydisperse packings of circular particlesedreases as
the size span becomes broader while the branch vector length atispy a
increases at the same time. The polydispersity is characterized lhetsize span
S=(dmnax Omin )=(dmax dmin ), Wheredn,i, and dyax are the extreme particle
diameters. Fig. 13 shows the evolution o& and a, as well as the normal
and tangential force anisotropie® and a? that will be discussed below, as a
function of s (Voivret [2008]).

"#
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Fig. 12. Polar representation of the average branch vectordngth hi( ) for the
triaxially compressed samples S'1 and S'2 as a function of #hzenith angle .
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Fig. 13. Evolution of fabric and force anisotropiesa, a, a2 and a? as a function of
the size spans in sheared packings of 19 circular particles simulated by the contact
dynamics method.

2.4 Evolution of granular texture

The granular texture evolves mainly due to contact loss and gain. Ehfraction
of lost and gained contacts depends on the contact orientationh& maximum
contact gain occurs along the major principal strain rate directiorffcompres-
sion axis) whereas the maximum contact loss occurs along the mindras

rate direction (direction of extension). The number of contacts istationary

12



at intermediate directions where the number of lost contacts eglsato the
number of gained contacts.

The evolution of the distribution N ( ) of contact orientations can be repre-
sented as a functiorS( ) de ned by

N—r

N

N
0= {0 N, )

(19)

whereN; and N; are the initial and nal distributions. When for a direction
there is more gain than loss, we hav8( ) > 1. In the opposite case, i.e. when
contact loss is dominant,S( ) < 1. The fact that harmonic approximation
ts generally well S( ) suggests that a second-order tensé@ can be used to
model the texture evolution so that

S( ): AR A= niAij n; (20)

where A here designs a unit vector with orientation . In the case of biaxial
compression, the principal directions oA are imposed by the boundary condi-
tions so that the stress and incremental strain principal directioscoincide. In
order to check the validity of this tensorial representation, we ¢wsider a test
implying the rotation of the principal directions of the incremental gain ten-
sor. Then, the principal directions of stress, strain " and incremental strain

" are coincident. Experimental data suggest thaA and are generally
coaxial. Hence, the tensoA may be expressed as a function of" as

A =a +b" (21)

where a and b are functions of incremental strain invariants. Experimental
tests indicate that a is close to 1, so that the evolution of texture may be
represented by

WN()=bn " n=b ") (22)

where ",( ) is the increment of elongational deformation in the direction
. Equation [22] allows one to evaluate the evolution of the texture dm the

incremental macroscopic deformation. This equation predicts théhe number

of contacts is constant ( N( ) = 0) along the zero extension lines ",( ) = 0.

13



2.5 Space partition: tessellation

A useful geometrical representation of granular texture consssof dividing the
space occupied by the particles into contiguous cells. This procedus called
\tessellation" and it can be considered as a rst step towards a ctinuum

description of the material. The most common tessellation rules aregsented
in this section.

2.5.1 Voronoi cells

Let us consider a set of material pointd1, with k 2 [1; N]. These points may
be the particle centers. The Voronoi cell@,) attributed to the point M, is
the polygonal domain de ned by the nearest point® of M,:

P2(C) if PM,<PM,, 8m6n (23)

Two cells (C,) and (C,,) are contiguous if there is a point? such that

PMn=PM,<PM, 816 m;n (24)

Hence, the boundaries of the cells are bisecting planes in 3D and hiseggclines
in 2D, and each cell contains only one point. This procedure can bepdipd
in the case of monodisperse circular or spherical particles, and leaell will
contain only one particle. In the case of contact between two pactes, the
bisecting plane is the tangent plane at the contact point; see Fig. 14

2.5.2 Dirichlet cells

The Voronoi tessellation can still be used in the case of polydispersgher-
ical/circular particles (e.g. by considering the particle centers), Wuit leads

to cells cutting through the particles. In order to assign one partie to each
cell, the Dirichlet tessellation can be used. The boundary of a cell is ded

by polygonal planes/lines which are radical planes/axes de ned até locus
of points which have equal tangents to the two considered sphsfarcles; see
Fig. 14. When the two particles are in contact, the radical plane/linas the
tangent plane/line at the contact point.

2.5.3 General case

For particles of arbitrary shape, a modi ed version of Voronoi tesellation may
be employed. Letd(P; G) be the distance from a pointP to the particle (G).

14



&( &)( &*(

Fig. 14. De nition of the points P for three di erent tessellation rules: (a) Voronoi
PC = PCP?, (b) Dirichlet (PT = PT9, and (c) Modi ed Voronoi ( PM = PM9.

Fig. 15. Examples of tessellation for 7 circular particlesi(a) Dirichlet cell, (b) mod-
i ed Voronoi cell.

The cell (C,,) assigned to the particle G,) is de ned by the set of pointsP
such that

P2(C,) if d(P:G,)<d(P:Gy) 8m6& n (25)

If this de nition is applied to circular particles with di erent radii, it is ea sy
to show that the boundaries of the cells are portions of hyperbolage Fig. 15.
For polygonal particles, the boundaries are lines and portions of gdoola. For
arbitrary particle shapes, the shape of the boundary depends t¢me particle
shape. Note that the de nition [??] does not require the choice of particular
points inside the particles.

2.5.4 Neighborhoods and local void ratios

The tessellation of space is a powerful tool which allows for a contunm de-
scription of space in association with a discrete granular texture drprovides
a framework for the de nition of local quantities associated with tle particles
and contact network. For example, the rst neighbors of a partie (G,) are
easily identi ed with the particles (G,,) whose cells C,,,) are contiguous with
the cell (C,) associated with particle G,). In this way, to each side of the
cell (C,), a neighbor of particle G,) is associated. LetN,, be the number of
neighbors of particle G,) and N, the total number of particles in the assem-
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Fig. 16. De nition of potential contact for two particles ( G,) and (Gp,); (ab) is the
common face of the two corresponding cells and = P,Pp, is the gap.

bly. The mean numberz, of neighbours per particle in the assembly is given
by

1 R
ZV_—

= N (26)
2N P n=1 :

The de nition of particle neighborhood can be used to de ne the nadns of
\potential contact” and \gap" (Fig. 16 ) which are important for n umerical
modeling of granular materials. Two particles@,) and (G,) have a potential
contact if they are neighbors, and their gap ig = P,P, where P, and P,
are the two proximal points on their boundaries. From a mechanicgoint of
view, with the rigid body assumption, a contact is active only if the gam
vanishes and the contact can bear a normal force. The coordir@at number
z is the mean number of active contacts per particle witlz  z,.

The space tessellationcan also be used to de ne local void ratios. &hthe
particle deformations are neglected and no overlap occurs betwdbe parti-
cles, each cell represents the free volume occupied by the partmbatained in
the cell. Let V,,, be the volume of the cell C,) and Vs, the volume of particle
(Gn). The local void ratio is given by

an
= — 27
en = 3 27)

Given a space tessellation, a dual division of space called Delaunaynigala-
tion, can be de ned; Fig. 17. LetP, be a point inside the particle G,). This
point may be chosen arbitrarily but it is usually the geometrical or indral
center of the particle. The Delaunay triangulation is obtained by simlg con-
necting the points belonging to neighboring cells. In this network, gamaterial
points P, are the nodes and the elements are triangles in 2D and tetrahedra
in 3D surrounding the intergranular voids. This duality can be used tale ne
macroscopic quantities (Bagi [1996]). The cellC() allow for the de nition
of neighbors and contacts. As a result, a stress tensor can be@sated with
each cell from the forces acting by the neighboring cells. On the ethhand,

16



Fig. 17. Delaunay triangulation for the sample presented inFig. ?7?.

a strain tensor can be assigned to each Delaunay cell from the dig@ments
of its nodes.

3 Granular kinematics

The plastic deformation of a granular system is fully characterizedybthe

rigid-body translational and angular velocities of the particles. Inle case of
small strains from an initial to a deformed con guration, the displaement

of the center of mass and rotation of each particle can be used. W¢hthe

particles follow on average the motion imposed by external loadingireng

deviations from the mean are observed. We discuss in this sectionttbthe

average and uctuating particle displacements and rotations. Welso consider
the issue of local strains and strain localization.

3.1 Particle displacements and rotations

Three examples of the displacement elds are displayed in Fig. 18 forak-
ial compression, simple shear test and a combined strain path. Inglsame
gure, the streamlines corresponding to a homogeneous defottima of the
sample are plotted. These streamlines are deduced from the boand con-
ditions and assuming a homogeneous deformation. The general reggion of
the displacement eld in the geometry of the 12" setup is

uy = ax + by (28)
uy = cy (29)

where the constantsa, b and c are determined from the deformation of the
frame surrounding the granular sample. The streamlines are clasdig de-

17



I"# I$# 19%6#

Fig. 18. Experimental displacement elds of particle centas for three di erent load-
ings: (a) biaxial compression, (b) simple shear and (c) biasal compression followed
by simple shear. The solid lines show streamlines deduceddim the assumption of
a homogeneous continuum deformation.
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Fig. 19. Evolution of the meanh i and standard deviation ! of particle rotations,
as well as the solid rotation (anti-symmetric part of the displacement eld), during
a biaxial compression followed by simple shear.

duced by integrating

= == (30)

A good agreement is observed between the continuum mechanicedction

and measured displacements of rod centers. Nevertheless, tieeitte nature
of the material gives rise to uctuations around these mean displaments (see
below).

3.2 Rolling vs. sliding

Sliding and rolling occur at persistent contact points during deformtan. At
a purely rolling contact the friction forcef, is partially activated, i.e. f,

f », wheref, is the normal force and is the coe cient of friction. For two
contacting particles G,) and (G,) at a point C, the condition of rolling
without sliding implies

V(C)= fV(Om)+ !'m OmCg f V(On)+ !y O,Cg=0 (31)
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Fig. 20. The network of rolling contacts in a simple shear tesby the 1 2" setup.

where V;(C) represents the sliding velocity at the contacC, and O,,, Op, ! i
and! , are the centers and spin vectors of3,) and (Gn,).

The contact point C corresponds to the superposition of two mati@l points
attached to the two particles:C,, 2 (G,) and C,, 2 (G,,). For the reference
con guration, the contact pointis C;, C, C,,. For a deformed con gura-
tion, the contact point C; is replaced by another pointC,, and the material
points C,, and C,,, at the boundaries of the two particles do not coincide any
more. Let us consider the oriented arc lengthe= C,C, and b= C,C,,. The
condition of rolling without sliding implies a+ b= 0. This condition may be
used to detect rolling contacts from particle displacements and rations in
experiments and numerical simulations (Lanier and Jean [2000], Oda &.
[1982], Dedecker et al. [2000]). One example is shown in Fig. 20 in theecak
a shear test. We observe that most contacts are rolling (nearly &) and they
tend to point in the principal stress direction (45 in shear test).

In numerical simulations, the rolling contacts can be determined fro the

condition f; < f ,, wheref, is the normal force,f; is the tangential force
and is the coe cient of friction. An example is displayed in Fig. 21 where
the sliding contacts are marked in a sample of 4000 particles. Only, @it 8%

of contacts are in the sliding state. In the same gure, the weak anstrong

force networks are shown (see below). It is remarkable that all sid) contacts

belong to the weak network, i.e. the contacts where the normalrte is below
the mean force.
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Fig. 21. The force-bearing network of contacts in a biaxialy compressed system of
4000 disks. The line thickness is proportional to the normalforce. The strong and
weak forces are shown in dark and light colors, respectivelyThe sliding contacts
are marked by small lled circles.

3.3 Fluctuating displacement elds

3.3.1 Uniform strain and uctuations

We consider here the particle displacements in slow 2D granular ow$he
displacements re ect the loss of stability of the particles, resultingn transi-
tion to new equilibrium states. Hence, the displacements are intimdyecor-
related with force uctuations in time (Bratberg et al. [2005], Taboala et al.
[2005]). As in the case of force chains, the macroscopic homogeaneitshear-
ing should be ensured in order to extract a meaningful statistics rfantrinsic
uctuations. In simulations, this is achieved by means of periodic bauary
conditions (Radjai and Roux [2002, 2004]). The displacement eld,owvever,
is not periodic if the mean strain is non-zero. In plane shear, it contes an
anepart r' (ri;rl), wherei is the particle label, in addition to a pe-
riodic uctuating eld s' (si; sl) of zero mean fisi = 0). The physical
mechanism underlying the uctuating eld s' is the mismatch of the uni-
form strain eld with mutual exclusions of the particles. As a resultthe local
strains deviate from the mean (far- eld) strain.

In the simulations with bi-periodic boundary conditions, the particlexan be
driven by imposing the a ne component r,' = tr 'y where is a constant
shear rate and t is the time step. In other words, the Fourier modeék = O
of the total strain is imposed, corresponding to large scale forcinQur focus
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Fig. 22. A snapshot of particle displacementss' with respect to the mean back-
ground ow.

here is on the uctuating components (s!; s‘y) in the steady state where
hr,'i' O.

Since we are interested in time scales beyond the elastic responsetithe par-
ticle velocities should be evaluated from particle displacements. Wensider
the periodic part of the velocity eld, and we de ne the uctuating velocities
v' as a function of the integration time by

. 12' .
viit+ )= = s'(t9 dt° (32)

In steady ow, the statistical properties of v are independent oft although
they crucially depend on . Although dynamic simulations involve the phys-
ical time, the inertial e ects are negligible and the contact networkevolves
quasistatically at time scales well below !. We normalize all times by !
so that the dimensionless timé represents the cumulative shear strain. We
also use the mean particle diameted to scale displacements. As a result, the
velocities will be scaled byd and the power spectra in space bydf )2.

Fig. 22 displays a snapshot of uctuating velocities/' for a short time lag

= 10 ° in the simulations. We observe that large-scale well-organized dis-
placements coexist with a strongly inhomogeneous distribution of giitudes
and directions on di erent scales. Convection rolls appear quite fjeently,
but they survive typically for strains less than 103. After such short times,
large-scale rolls break down and new statistically uncorrelated stiures ap-
pear. This behaviour is thus radically di erent from turbulence eddis which
survive long enough to undergo a signi cant distortion due to uid mdon.
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Fig. 23. Probability density functions of the y-components of uctuating velocities
for two di erent time resolutions: 10 2 (broad curve) and 10 ! (narrow curve). The
latter is tted by a Gaussian

Fig. 24. Averaged power spectrum of thex and y components of the uctuating
velocity eld with =10 7 for one-dimensional cross sections along the mean ow.

3.3.2 Probability densities

An interesting issue is how the velocity distributions depend the on timres-
olution . In uid turbulence, the phenomenon of intermittency, i.e. strong
localized energy transfers at small scales, leads to the broadenaighe expo-
nential tails of the distributions of velocity di erences at increasinty smaller
scales. The distributions oﬁ/iy are shown in Fig.23 for a small integration time
=10 3, and for a large integration time =10 1. We see that thedistribu-
tion has changed from a nearly Gaussian shape at largdo a non-Gaussian
shape with broad stretched exponential tails extending nearly tche center
of the distribution at small . This non-Gaussian broadening of the distribu-
tions as a function of is observed also for the component,. The transition
toward a Gaussian distribution for large time lags is a sign of partial Igsof
correlation and/or exhaustion of large uctuations (Radjai and Poux [2002]).

22



3.3.3 Spatial correlations

The extent of spatial correlations may be estimated by considerirtbe power
spectrumE of uctuating velocities along and perpendicular to the ow. The
averaged spectrum on one-dimensional cross sections of theasb@ packing
is shown in Fig.24. The Fourier transform is performed over the uctating
velocity eld de ned on a ne grid by interpolating the velocities from particle
centers. The power spectra are quite similar along and perpendicula the
ow, and for di erent snapshots of the ow. They have a clear powr-law
shapek ranging from the smallest wavenumbek = d=L, corresponding to
the system sizd_, up to a cut-o around k = 0:5, corresponding to nearly two
particle diameters. The exponent is ' 1:24' 5=4 over nearly one decade.
This means that the uctuating velocity eld is self-a ne.

The \intensity" of the velocity uctuations, de ned as the ratio of the root
mean square displacement to the convective displacement of a peld, is
about 2%. This amount of displacement is, however, su cient to moifly the
kinematics in the vicinity of a particle, a local information that has a cucial
consequence for our description of the fabric evolution and plastilume
change in granular media.

3.3.4 Granulence

The transition of velocity distributions from stretched exponentidto gaussian
as the time lag is increased and the power-law spectrum of the velgcield, as

well as the superdi usive character of particle motion (not shown dre), bear
a remarkable analogy with the scaling features of uid turbulence (&djai

and Roux [2002]). Turbulence studies focus mainly on velocity di erees v

measured at a xed point of a uid over a time interval or between two
points separated by a distance. This is in contrast with granular ow which

involves a discrete displacement eld that is carried by individual paitles.
Up to this di erence in framework, the scaling properties discussembove are
shared by turbulent uid ows. The power-law scalingk for the spectrum
of velocity di erences is a hallmark of 3D turbulence with ' 5=3 (to be
compared with ' 5=4 in our granular ow).

The observed analogy between granular velocity uctuations anduid tur-
bulence in terms of scaling characteristics upgrades kinematic ugtions in
guasistatic granular ow to the rank of a systematic phenomenolggwhich has
been coined by the term \granulence" as compared to \turbulentdan uid
dynamics. Remark that this analogy works with three-dimensionalurbulence
although the simulation data concern a two-dimensional granular w.

The uctuating velocities and their scaling behavior are important fo mod-
eling the plastic behavior of granular materials from particle-scale osidera-

23



tions. The self-a ne nature of particle displacement elds means tht uniform
strain in a granular ow is accommodated via correlations at all scale3his
behavior does not imply that velocity correlations extend to in nity under
arbitrary boundary conditions. The observed scaling charactetiss are a con-
sequence of uniform shear. An interesting consequence is thatform strain
is easily disturbed as a result of the details of con ning conditions orys-
metry breaking agents such as a bulk force. In other words, dishing the
long-range correlations leads to nonuniform behavior. This might bibe ori-
gin of the well-known property of granular materials to localize spoaheously
the strain.

3.4 Local and global strains

In continuum mechanics, the local strain is de ned by the displacemegra-
dient at a given point of the material. The displacement eld is assumetb be
a continuous function of the coordinates. In granular media, thegpticles are
not the volume elements of a continuum, and hence the local straine. the
strain at the particle scale, is not simply given by the gradient of the guticle
displacement eld. Only at larger scales, i.e. at the scale of a repretative
volume element of the material, the mean macroscopic strain in thense of
continuum mechanics can be de ned. Here, we introduce a de nitioaf local
strains on the basis of particle neighborhood in the sense of adjaceells of
a tessellation. We then use this de nition to study strain localization.

3.4.1 Particle-scale strain

Let us consider a particle G) and its neighbors ;) with their centers O;.

Let (L) be the polygonal line which connects the point®; and (S) the sur-

face of this polygon; see Fig. 25. As the poin®®; are material points, their

displacements are well de ned. The mean value of the displacememadient
is given by

172
h@u i = S @u dS =
(S) (L)

4
un d (33)

(I

wheref(n ) is the unit normal vector of (L). To perform this integration, we
should extrapolate the displacements to all points of space singe is known
only at the points O;. Assuming a linear approximation along each side of the
polygon, we get

v
h@u i = 1 n® U + ykeD y (34)
2S
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Fig. 25. De nition of local strain in the neighborhood of particle (G). The polygonal
line (L) connects the centers of the neighboring particles accordg to the Dirichlet
cell (V).

where ) is the length of the side labelleck, n® is the unit normal of this
side, andu®® and u**Y are the displacements of two successive corners. The
strain tensor associated with particle G) is then the symmetric part ofh@u 1i.

It is worth noting that the expression [34] does not take into accaou the
particle rotations. On the other hand, it concerns only the immediat neigh-
borhood of each particle involving a volume of three particles which iarffrom
a representative volume element. As a consequence, this locabstrshould
rather be considered as a discrete measure of local deformatidotually, the
macroscopic strain is de ned through a similar approach with a polygal line
(L) surrounding a representative volume element. The approximate &ar size
of such a volume is of the order of 15 to 20 particles (Calvetti et al. 927]).

3.4.2 Strain localization

Strain localization is an important topic of research in soil mechanick classi-
cal laboratory tests such as triaxial compression and plane strasompression,
the homogeneity of strain is necessary for the characterizatiohtbhe material.
But in practice, it is virtually impossible to avoid the localization of straininto
shear bands. Incremental analysis of deformation by stereogibgrammetry
shows that the strain is more or less homogeneous at the beginnifigampres-
sion, but as the stress state approaches the peak stress, ttraia concentrates
into shear bands (Desrues et al. [1983, 1996]). The thickness & ghear bands
is generally estimated to vary from 10 to 20 particle diameters in thease of
sand with narrow size distribution. It is also a general observatiorhat strong
dilatancy occurs inside the shear bands if the material is initially dense

In 2D experiments by the 12 apparatus, the local shear intensitie = "; ",
can be evaluated from the local strains. Fig. 26 shows a map of lochlear
intensities, represented by squares of size proportional E, in biaxial com-
pression. We observe two main shear bands across the sample wilections
on the walls. The same system was simulated by means of the contdghamics
method (Lanier and Jean [2000]). As shown in Fig. 27, a similar sheaasialing
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Fig. 26. Strain localization in a biaxial compression test ly the 1 2 apparatus. The
square size is proportional to the local shear intensity.

Fig. 27. Strain localization in a simulated biaxial compresion with a sample whose
initial con guration is the same as in the experiments (see kg. 26). The square size
is proportional to the local shear intensity.

pattern in position and thickness is obtained if the initial particle conguration

in the simulations is the same as in the experiments. An initial con guitgon

even slightly di erent from the experimental con guration does no lead to

the same shear patterns. This sensitivity to the initial con guration makes the
shear bands di cult to predict.

4 Conclusion

Many concepts and notions developed in this report are currentlysad for the
description and modeling of granular media. For example, the fabriemsors
are important for the characterization of the texture. Some otér aspects,
such as particle velocity uctuations, are less well known but theynovide the
necessary information for a re ned characterization of granulaows. As far as
the relation between granular texture and quasi-static rheology soncerned,
some hints were given. This is an active research area and one of guals
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of the present book. The approach followed in this chapter was ks on
the local vectors associated with a pair of contacting particles. Bhgranular
texture was then described in terms of the statistical distributios and spatial
correlations of these vectors. However, in a statistical apprdato the particle
equilibrium states, which underly the yield properties of a granular noum,
the fabric tensors are not su cient. The description of the envirament of

particle (Roux and Radjai [2001], Troadec et al. [2002]). Both the ooectivity
function P(c) and g, are controlled by steric constraints of the particles, i.e.
mutual exclusions together with excluded-volume e ects, that impse an upper
bound on the number of contact neighbors. In the same way, th@ew behavior
involves a statistical characterization of void cells. We did not introdce these
aspects although interesting material can be found in the literater. Only basic
de nitions, such as di erent tessellation methods, were given as ast step
towards a statistical description at the mesoscopic scale.

We did not consider the important issue of disorder and its nature inrgnular

media. In particular, it is essential to distinguish between topologi¢aand

metric disorders because of the unilateral character of contabetween rigid
particles. In granular media, the topological disorder, i.e. disordeelated to

particle connectivity, is more fundamental. Moreover, the descrijpn of metric

disorder, i.e. the spatial correlations of particle positions, requisean extension
of classical functions such as pair correlation functions in order sxcount for
particle size polydispersity.
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