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1 Introduction

Granular materials consist of densely packed solid particles and a pore-�lling
material which can be a uid or a solid matrix. The particles interact viaelastic
repulsion, friction, adhesion and other surface forces. By nature, the length
scales involved in these contact interactions are well below the particle size.
External loading leads to particle deformations as well as cooperative particle
rearrangements. The particle deformations are of particular importance in
powder metallurgy, for example, but the particles may be considered as quasi-
rigid beyond the elastic response times.

The contact network and pore space are the two facets of the microstructure
of granular materials, to which we will refer asgranular texture. At the particle
scale, the granular texture involves three basic vectors from which other local
geometrical variables can be de�ned: 1) thebranch vector ~̀ � `~n0 joining
the centers of contacting particles, 2) the contact orientation vector (contact
normal) ~n de�ned as the unit vector normal to the particle boundary at the
contact zone� and 3) the contact vectors~c joining the particle centers to the
contact point; see Fig. 1. The reaction forces~f and � ~f acting on two particles
at their contact zone have a unique application point which may be considered
as their contact point in the case of extended contacts such a face-face contact
between two polyhedral particles.

Two di�erent local frames can be associated with a pair of contacting particles:
1) The frame de�ned by the contact normal~n and two orthogonal unit vectors
(~t;~s) in the contact plane (tangent to the two particles at the contactpoint);
2) The frame de�ned by the \radial" unit vector ~n0 and two orthogonal unit
vectors (~t0; ~s0) in a orthoradial plane (orthogonal to the branch vector). These
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Fig. 1. Local vectors at the contact � between two particles 1� and 2� : branch vector
~̀, contact normal ~n, contact force ~f and contact vectors~c.

two frames coincide in the case of spherical particles. In 2D, the local frame
is uniquely de�ned by a single tangent unit vectort or t0.

The granular texture is disordered with many di�erent variants depending on
the composition(particles shapes and sizes), interactions and assembling pro-
cedure. The granular disorder is essentially characterized by the fact that, as a
result of geometrical exclusions among particles, the local vectors vary discon-
tinuously from one contact to another. In other words, the localenvironments
uctuate in space. The contact network evolves with loading so that the local
environments uctuate also in time. The highly inhomogeneous distribution
of contact forces reects granular disorder in static equilibrium. In particular,
the force chainsreveal long-range correlations whereas the presence of a broad
population of very weak forces results from thearching e�ect. The force and
fabric anisotropies are two complementary aspects of stress transmission, and
they can be employed in local (particle-scale) description of granular media in
the quasi-static state.

The geometrical changes of granular texture are at the origin of the complex
rheology of granular materials. These changes are highly nonlinear,involv-
ing creation and loss of contacts, rotation frustration and frictional sliding.
They depend on the dissipative nature of contact interactions andsteric ex-
clusions among particles. In quasi-static deformation, various features of the
plastic behavior such as shear strength and dilatancy can be traced back to
the evolution of granular texture.

We introduce below several concepts and tools for the descriptionof granular
texture and kinematics with examples and illustrations from discreteelement
simulations (molecular dynamics and contact dynamics). We �rst consider
the description of granular texture in terms of particle positions and contact
orientations. Then, the kinematics and mechanisms of plastic deformation are
analyzed.
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2 Description of granular texture

The granular texture is generally described in terms of the distributions of
the vectors~n, ~̀and~cassociated with the local geometry. At the lowest order,
the relevant scalar parameters concern theconnectivity of this network. At
higher orders, the anisotropy of the texture is described byfabric tensors.
Such de�nitions rely either directly on the local vectors or on a partition of
the space occupied by the particles in terms of Voronoi cells or Delaunay
tessellation.

2.1 Particle connectivity

The connectivity of a granular assembly refers to the set of force-bearing (ac-
tive) contacts. A number of contacts do not participate in force transmission.
These \inactive" contacts and \oating" particles (with no active contact)
are generally removed from the statistics. The connectivity is described at the
lowest order by thecoordination numberde�ned as the average numberz of
contact neighbors per particle. This is a crude scalar information ascompared
to the complex arrangement of the particles, but it is well known that the com-
pactness of the texture controls the stress-strain behavior under monotonic
shearing. Remark that for particles of arbitrary shape (polygones, polyhedra,
...), di�erent types of contact (edge-to-edge, face-to-face, etc) exist, and they
can be distinguished by de�ning a distinct coordination number for each type
of contact.

Fig. 3 shows the evolution ofz for two di�erent packings during a biaxial
compression test performed by means of the contact dynamics method as a
function of the cumulative shear strain"q = "1 � "2 in 2D. The �rst sample,
denoted S1, is composed of 14400 regular pentagons of three di�erent diame-
ters: 50% of diameter 2:5 cm, 34% of diameter 3:75 cm and 16% of diameter 5
cm. The second sample, denoted S2, is composed of 10000 discs withthe same
particle size distribution. Both samples were prepared by isotropic compaction
with zero friction. Hence, at the initial state, both numerical samples are in an
isotropic stress state. The solid fraction is� 0 = 0:80 for S1 and� 0 = 0:82 for
S2. Figure 2 displays snapshots of the two packings at the beginningof biaxial
compression. The coe�cient of friction during compression is 0:4 between the
particles and 0 between the walls and the particles. The coordinationnumber
evolves towards a steady-state value in both samples with a higher value for S2
(' 3:85) than for S1 (' 3:75). The di�erence is, however, much less important
than in the initial con�guration ( ' 3:95 for S2 compared to' 3:20 for S1)
prepared by means of isotropic compaction (Azma et al. [2007]).
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Fig. 2. Snapshots of a portion of the samples S2 (a) and S1 (b) composed of circular
and pentagonal particles, respectively.
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Fig. 3. Coordination number z as a function of cumulative shear strain"q for two
samples S1 and S2 during a biaxial compression test simulated by the contact dy-
namics method.

The connectivity of the contact network can be characterized in more detail
by the proportion P(c) of particles with exactly c contact neighbors. The
coordination number is the mean value ofc : z =

P
c cP(c). The connectivity

P(c) of the particles is plotted in Fig. 4 for S1 and S2 at"q = 0:3. The two
plots are nearly identical with a peak atc = 4. In both samples, the fraction
of particles with 5 contacts is higher than that with 3 contacts. Thisshows
that the connectivity does not reect the di�erence in texture between the
two packings although a qualitative di�erence exists in terms of the fabric
and force anisotropies (see below).

2.2 Contact network anisotropy: fabric tensors

The shear strength of dry granular materials is generally attributed to the
buildup of an anisotropic texture during shear due to friction between the
particles and as a result of steric e�ects depending on particle shapes and sizes
(Oda et al. [1980], Cambou [1993], Radjai et al. [2004]). Several methods have
been used to quantify the fabric (structural) anisotropy of granular materials
(Satake [1982], Rothenburg and Bathurst [1989], Oda and Iwashita[1999],
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Fig. 4. Connectivity diagram for the samples S1 and S2 expressing the fraction P(c)
of particles with exactly c contacts in the steady state.

Kanatani [1984]).

2.2.1 General case

Following Kanatani, let us consider a physical quantity carried by a set of
unit vectors (Kanatani [1984]). These vectors may be contact normals f ~ng or
branch unit vectors~n0 (unit vector along the branch vector) inside a granular
sample. Let us assume thatN measurements are obtained from this sam-
ple: f ~n(1) ; � � � ~n(N ) . From these experimental values, we de�ne an experimental
probability density function Pexp(~n) which can be approximated by a theoret-
ical distribution P(~n). Since the vectors~ni are unit vectors, Pexp and P are
de�ned on a unit sphere in 3D or a unit circle in 2D, denoted byS in the
following. By de�nition, we have P(~n) � 0 and

R
S P(~n)d
 = 1. Remark also

that the contact orientations have no intrinsic parity, so thatP(~n) = P(� ~n).

The \best" theoretical approximation may be obtained by means ofthe least
square method which amounts to minimizing the function

E =
Z

S

f P(~n) � Pexp(~n)g2d
 (1)

with respect to the parameters involved in the de�nition ofP(~n). Let P be
expanded as a polynomial sum

P(~n) = C0 + Cij ni nj + Cijkl ni nj nknl + h.o.t. (2)

where odd terms have been dropped due to the even parity ofP. In this form,
the function P is parametrized by the tensorsCij::: of increasing order. It can be
shown that for an approximation of orderm, all terms of order belowm should
be omitted since they can be expressed through the higher-orderterms. For
example, using the identity tensorI , we can writeCij ni nj = ( Cij I kl )ni nj nknl ,
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sinceI kl nknl = 1. Hence, the most general polynomial expression of orderm
is simply given by

P(~n) = Ci 1 i 2 :::i m ni 1 ni 2 : : : ni m (3)

for i k = 1; 2; 3 in 3D and i k = 1; 2 in 2D. The minimization of E de�ned
by equation [1] with the expression ofP given by [3] leads to a linear set of
equations

A �� C� = F� (4)

where � and � design the collective indicesj 1j 2 : : : j m and i1i2 : : : im , respec-
tively, with

A �� =
Z

S

ni 1 ni 2 : : : ni m nj 1nj 2 : : : nj m d
 (5)

and

F� =
Z

S

Pexp(~n)nj 1nj 2 : : : nj m d
 (6)

The tensorF� is a symmetric tensor of orderm that represents the mean value
of the product nj 1nj 2 : : : nj m :

Fi 1 i 2 :::i m = hni 1 ni 2 : : : ni m i =
1
N

NX

k=1

nk
i 1

nk
i 2

: : : nk
i m

(7)

This tensor is often calledfabric tensorof orderm. It is symmetric and involves
(m +1)( m +2) =2 andm +1 independent elements in 3D and 2D, respectively.
The fabric tensors contain all the relevant directional informationof the con-
sidered quantity in the space of contact orientations. However, the intuitive
meaning of these tensors is not straightforward to grasp (Kanatani [1984]).

An equivalent description of directional data is given by considering the fol-
lowing expansion in terms of deviatoric tensorsD = C � I :

P(~n) =
1



f 1 + D ij ni nj + D ijkl ni nj nknl + h.o.t. g (8)

These tensors are fully symmetric, i.e.D ::i::j:: = D ::j::i:: , and tr (D) = 1.
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2.2.2 Case of 2D data

For 2D data, the above tensors are de�ned by two independent elements, and
the expansion given in (8) is equivalent to a Fourier expansion

P(~n) =
1

2�
f 1 + a2 cos 2� + b2 sin 2� + � � �

+ a2m cos 2m� + b2m sin 2m� + h:o:t:g (9)

where� is the orientation of~n(cos�; sin� ). The coe�cients ai and bi represent
the anisotropy of the texture at di�erent orders. If the Fourier expansion is
truncated beyond the second term, we have

P(~n) = Cij ni nj =
1

2�
f 1 + D ij ni nj g (10)

with Cij = 4hni nj i � I ij and D ij = Cij � I ij . If � c is the orientation of the major
principal direction of D and ac the di�erence between its principal values, the
second-order expansion ofP can be written as

P(~n) =
1

2�
f 1 + acos 2(� � � c)g (11)

In this expression,a is the second-order fabric anisotropy. The above expres-
sion provides a reasonable approximation for a unimodal distributionof the
data. Otherwise, higher-order anisotropies should be taken into account.

Equation 11 is related to the second-order fabric tensor by

F�� =
1
�

�Z

0

n� (� )n� (� )P(� )d� �
1

Nc

X

c2 V

nc
� nc

� ; (12)

where � and � design the components in a reference frame, andNc is the
total number of contacts in the control volumeV. By de�nition, tr (F ) = 1.
The anisotropy of the contact network is given by the di�erence between the
principal valuesF1 and F2 of F . It is easily shown that

a = 2( F1 � F2): (13)

For �xed coordinates, with the x-axis pointing along a direction� 0, we can
also de�ne a "signed anisotropy"a0 by

a0 = 2( F1 � F2) cos 2(� c � � 0); (14)
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Fig. 5. Second-order approximation of the probability density P(� ) plotted in polar
coordinates for a = 0 :5 and � c = �= 6.
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Fig. 6. Polar representation of the probability density function P(� ) of contact
normal directions � for the samples S1 and S2 in the steady state.
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Fig. 7. Evolution of the \signed" anisotropy a0 with cumulative shear strain "q for
the samples S1 and S2.

where � c is the major principal direction of the fabric tensor. For� 0 = � c, we
have a0 = a. In polar coordinates, equation (11) has a \peanut" shape for
0 � ac � 1. It is reduced to a circle in the limit of an isotropic set for which
ac = 0; see Fig. 5.

Figure 6 displays a polar representation ofP(� ) for the samples S1 and S2 at
"q = 0:3 (Azma et al. [2007]). We observe a nearly isotropic distribution for
the pentagon packing in spite of shearing whereas the disk packing ismarkedly
anisotropic. The distribution is clearly unimodal and a (second-order) Fourier
expansion provides a good approximation.
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Fig. 8. Evolution of the coordination number z and \signed" anisotropy a0 with
cumulative shear strain "q for a loose sample and a dense sample in simple shear
and in reversed simple shear from the steady state.

The evolution of a0 is shown in Fig. 7 as a function of"q for S1 and S2. The
privileged direction of the contacts� c is vertical in both packings. In both
cases,a0 increases from 0 (as a result of the initial isotropic compression) and
tends to a steady value at large strains. The low anisotropy of the pentagon
packing results from a particular organization of the force network in corre-
lation with the orientations of side-to-side and vertex-to-side contacts in the
packing.

The evolution of z and a0 is shown in Fig. 8 for simple shear starting from a
loose sample, starting from a dense sample and during a reversed simple shear
from the steady state, for a 2D system of disks (Radjai and Roux[2004]). We
see that bothz and a evolve during the transients (at the beginning of shear
where the material is in an isotropic state and in the transient following shear
reversal). Interestingly, shear reversal causes initiallyz to decrease before the
steady state is reached again in the opposite direction with the steady-state
value of z.

2.2.3 Case of 3D data

The probability density P(~n) of unit vectors ~n can be expanded according to
equation 10. This expansion in 3D at leading order is equivalent to a represen-
tation of the data in terms of spherical harmonics (Ouadfel and Rothenburg
[2001], Az�ema et al. [2008]). LetA (~n0) be the set of branch vectors pointing in
the direction ~n0 � (�; � ) up to a solid angled
, and Nc(~n0) its cardinal. The
angles� and � are shown in Fig. 9. By de�nition, we have

P(~n0) =
Nc(~n0)

Nc
(15)

We consider here axisymmetric (symmetry by revolution) conditionsas in a
classical triaxial test. Then, the functionP(~n0) is independent of� . There are
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Fig. 9. Spherical coordinates.

nine second-order basis functionsY l
m (�; � ). But only the functions compatible

with the symmetries of the problem, namely independent with respect to � and
� -periodic as a function of� , are admissible under axisymmetric conditions.
Hence, the only admissible functions areY 0

0 = 1 and Y 0
2 = 3 cos2 � � 1, and

we have

P(~n0) =
1

4�
f 1 + a [3 cos2(� � � b) � 1] g (16)

wherea is the anisotropy of branch vector orientations and� b their privileged
orientation. The function P(~n0) is normalized to 1 (

R
S P(~n0)d
 = 1). We will

refer to this expansion at leading order in spherical harmonics as theharmonic
approximation.

Figure 11 shows a polar representation ofP(~n0) for two samples of polyhedra
(S'1) and spheres (S'2) subjected to triaxial compression by means of contact
dynamics simulations. The two samples are displayed in Fig. 10. The �rst
sample (S'1) is composed of 36933 polyhedra of irregular shape involving at
least 12 faces and 8 vertices and at most 70 faces and 37 vertices.The second
sample (S'2) is composed of 19998 spheres with exactly the same sizedistri-
bution as in S'1. During triaxial compression, the coe�cient of friction is 0:5
between the particles and 0 with the walls. The harmonic approximation is
well �t to the distribution P(~n0) for both sheared samples. It is remarkable
that the anisotropy is lower for polyhedra compared to spheres.

2.3 Branch vectors

In the last section, we considered the fabric tensors constructed from the
branch vectors~̀ � `~n0. The branch vector lengths` can be characterized by
their probability density function Pl (~n0) and their angular average function
h̀ i (~n0) de�ned by

h̀ i (~n0) =
1

Nc(~n0)

X

c2A (~n0)

`c (17)
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Fig. 10. Snapshots of the two packings S'1 (polyhedra) and S'2 (spheres) simulated
by the contact dynamics method. The walls are not shown.
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Fig. 11. Polar representation of the density probability P(~n0) for S'1 et S'2 at the
sheared state. The solid lines are harmonic �ts to the data points.

whereA(~n0) is the set of branch vectors pointing in the direction~n0 � (�; � )
up to a solid angled
 and Nc(~n0) is its cardinal.

One example is shown in Fig. 12 for triaxially sheared samples of polyhedra
and spheres as a function of the zenith angle� of the branch unit vectors~n0

(Az�ema et al. [2008]). The data points are �tted by a harmonic expansion:

h̀ i (~n0) = `m f 1 + al [3 cos2(� � � l ) � 1] g (18)

where `m is the mean branch vector length,al is the branch vector length
anisotropy and � l is the angle at which the largest distance between particle
centers occurs.

The value of al is generally weak. But it can become more important for
elongated or highly polydisperse particles. In Fig. 12, its value is about 0:1 for
polyhedral particles generated from spheres. An interesting behavior recently
evidenced by numerical simulations is that the fabric anisotropya for branch
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vector orientations of polydisperse packings of circular particles decreases as
the size span becomes broader while the branch vector length anisotropy al

increases at the same time. The polydispersity is characterized by the size span
s = ( dmax � dmin )=(dmax � dmin ), wheredmin and dmax are the extreme particle
diameters. Fig. 13 shows the evolution ofa and al , as well as the normal
and tangential force anisotropiesa0

n and a0
t that will be discussed below, as a

function of s (Voivret [2008]).

!"#
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Fig. 12. Polar representation of the average branch vector length h̀ i (� ) for the
triaxially compressed samples S'1 and S'2 as a function of the zenith angle� .
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Fig. 13. Evolution of fabric and force anisotropiesa, al , a0
n and a0

t as a function of
the size spans in sheared packings of 104 circular particles simulated by the contact
dynamics method.

2.4 Evolution of granular texture

The granular texture evolves mainly due to contact loss and gain. The fraction
of lost and gained contacts depends on the contact orientation. The maximum
contact gain occurs along the major principal strain rate direction(compres-
sion axis) whereas the maximum contact loss occurs along the minor strain
rate direction (direction of extension). The number of contacts isstationary
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at intermediate directions where the number of lost contacts equals to the
number of gained contacts.

The evolution of the distribution N (� ) of contact orientations can be repre-
sented as a functionS(� ) de�ned by

S(� ) =
N f (� )
N i (� )

= 1 +
� N (� )
N i � )

(19)

whereN i and N f are the initial and �nal distributions. When for a direction �
there is more gain than loss, we haveS(� ) > 1. In the opposite case, i.e. when
contact loss is dominant,S(� ) < 1. The fact that harmonic approximation
�ts generally well S(� ) suggests that a second-order tensorA can be used to
model the texture evolution so that

S(� ) = A~n � ~n = ni A ij nj (20)

where~n here designs a unit vector with orientation� . In the case of biaxial
compression, the principal directions ofA are imposed by the boundary condi-
tions so that the stress and incremental strain principal directions coincide. In
order to check the validity of this tensorial representation, we consider a test
implying the rotation of the principal directions of the incremental strain ten-
sor. Then, the principal directions of stress� , strain " and incremental strain
� " are coincident. Experimental data suggest thatA and � " are generally
coaxial. Hence, the tensorA may be expressed as a function of �" as

A �� = a� �� + b� " �� (21)

where a and b are functions of incremental strain invariants. Experimental
tests indicate that a is close to 1, so that the evolution of texture may be
represented by

� N
N

(� ) = b n� � " �� n� = b � "n (� ) (22)

where � "n (� ) is the increment of elongational deformation in the direction
� . Equation [22] allows one to evaluate the evolution of the texture from the
incremental macroscopic deformation. This equation predicts that the number
of contacts is constant (� N (� ) = 0) along the zero extension lines �"n (� ) = 0.
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2.5 Space partition: tessellation

A useful geometrical representation of granular texture consists of dividing the
space occupied by the particles into contiguous cells. This procedure is called
\tessellation" and it can be considered as a �rst step towards a continuum
description of the material. The most common tessellation rules are presented
in this section.

2.5.1 Voronoi cells

Let us consider a set of material pointsM k with k 2 [1; N ]. These points may
be the particle centers. The Voronoi cell (Cn ) attributed to the point Mn is
the polygonal domain de�ned by the nearest pointsP of Mn :

P 2 (Cn ) if P Mn < P M m 8m 6= n (23)

Two cells (Cn ) and (Cm ) are contiguous if there is a pointP such that

P Mm = P Mn < P M l 8l 6= m; n (24)

Hence, the boundaries of the cells are bisecting planes in 3D and bisecting lines
in 2D, and each cell contains only one point. This procedure can be applied
in the case of monodisperse circular or spherical particles, and each cell will
contain only one particle. In the case of contact between two particles, the
bisecting plane is the tangent plane at the contact point; see Fig. 14.

2.5.2 Dirichlet cells

The Voronoi tessellation can still be used in the case of polydispersespher-
ical/circular particles (e.g. by considering the particle centers), but it leads
to cells cutting through the particles. In order to assign one particle to each
cell, the Dirichlet tessellation can be used. The boundary of a cell is de�ned
by polygonal planes/lines which are radical planes/axes de�ned as the locus
of points which have equal tangents to the two considered spheres/circles; see
Fig. 14. When the two particles are in contact, the radical plane/lineis the
tangent plane/line at the contact point.

2.5.3 General case

For particles of arbitrary shape, a modi�ed version of Voronoi tessellation may
be employed. Letd(P; G) be the distance from a pointP to the particle (G).
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Fig. 14. De�nition of the points P for three di�erent tessellation rules: (a) Voronoi
PC = PC0 , (b) Dirichlet ( PT = PT0), and (c) Modi�ed Voronoi ( PM = PM 0).

Fig. 15. Examples of tessellation for 7 circular particles:(a) Dirichlet cell, (b) mod-
i�ed Voronoi cell.

The cell (Cn ) assigned to the particle (Gn) is de�ned by the set of pointsP
such that

P 2 (Cn ) if d(P; Gn) < d (P; Gm ) 8m 6= n (25)

If this de�nition is applied to circular particles with di�erent radii, it is ea sy
to show that the boundaries of the cells are portions of hyperbola;see Fig. 15.
For polygonal particles, the boundaries are lines and portions of parabola. For
arbitrary particle shapes, the shape of the boundary depends onthe particle
shape. Note that the de�nition [??] does not require the choice of particular
points inside the particles.

2.5.4 Neighborhoods and local void ratios

The tessellation of space is a powerful tool which allows for a continuum de-
scription of space in association with a discrete granular texture and provides
a framework for the de�nition of local quantities associated with the particles
and contact network. For example, the �rst neighbors of a particle (Gn ) are
easily identi�ed with the particles (Gm ) whose cells (Cm ) are contiguous with
the cell (Cn) associated with particle (Gn ). In this way, to each side of the
cell (Cn ), a neighbor of particle (Gn) is associated. LetNvn be the number of
neighbors of particle (Gn) and Np the total number of particles in the assem-
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Fig. 16. De�nition of potential contact for two particles ( Gn ) and (Gm ); (ab) is the
common face of the two corresponding cells andg = Pn Pm is the gap.

bly. The mean numberzv of neighbours per particle in the assembly is given
by

zv =
1

2Np

NpX

n=1

Nvn (26)

The de�nition of particle neighborhood can be used to de�ne the notions of
\potential contact" and \gap" (Fig. 16 ) which are important for n umerical
modeling of granular materials. Two particles (Gn ) and (Gm ) have a potential
contact if they are neighbors, and their gap isg = PnPm where Pn and Pm

are the two proximal points on their boundaries. From a mechanicalpoint of
view, with the rigid body assumption, a contact is active only if the gapg
vanishes and the contact can bear a normal force. The coordination number
z is the mean number of active contacts per particle withz � zv.

The space tessellationcan also be used to de�ne local void ratios. When the
particle deformations are neglected and no overlap occurs between the parti-
cles, each cell represents the free volume occupied by the particlecontained in
the cell. Let Vvn be the volume of the cell (Cn) and Vsn the volume of particle
(Gn ). The local void ratio is given by

evn =
Vvn

Vsn
(27)

Given a space tessellation, a dual division of space called Delaunay triangula-
tion, can be de�ned; Fig. 17. LetPn be a point inside the particle (Gn ). This
point may be chosen arbitrarily but it is usually the geometrical or inertial
center of the particle. The Delaunay triangulation is obtained by simply con-
necting the points belonging to neighboring cells. In this network, the material
points Pn are the nodes and the elements are triangles in 2D and tetrahedra
in 3D surrounding the intergranular voids. This duality can be used tode�ne
macroscopic quantities (Bagi [1996]). The cells (Cn ) allow for the de�nition
of neighbors and contacts. As a result, a stress tensor can be associated with
each cell from the forces acting by the neighboring cells. On the other hand,
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Fig. 17. Delaunay triangulation for the sample presented inFig. ??.

a strain tensor can be assigned to each Delaunay cell from the displacements
of its nodes.

3 Granular kinematics

The plastic deformation of a granular system is fully characterized by the
rigid-body translational and angular velocities of the particles. In the case of
small strains from an initial to a deformed con�guration, the displacement
of the center of mass and rotation of each particle can be used. While the
particles follow on average the motion imposed by external loading, strong
deviations from the mean are observed. We discuss in this section both the
average and uctuating particle displacements and rotations. We also consider
the issue of local strains and strain localization.

3.1 Particle displacements and rotations

Three examples of the displacement �elds are displayed in Fig. 18 for biax-
ial compression, simple shear test and a combined strain path. In the same
�gure, the streamlines corresponding to a homogeneous deformation of the
sample are plotted. These streamlines are deduced from the boundary con-
ditions and assuming a homogeneous deformation. The general expression of
the displacement �eld in the geometry of the 1 2" setup is

ux = ax + by (28)
uy = cy (29)

where the constantsa, b and c are determined from the deformation of the
frame surrounding the granular sample. The streamlines are classically de-
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Fig. 18. Experimental displacement �elds of particle centers for three di�erent load-
ings: (a) biaxial compression, (b) simple shear and (c) biaxial compression followed
by simple shear. The solid lines show streamlines deduced from the assumption of
a homogeneous continuum deformation.
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Fig. 19. Evolution of the mean h! i and standard deviation � ! of particle rotations,
as well as the solid rotation (anti-symmetric part of the displacement �eld), during
a biaxial compression followed by simple shear.

duced by integrating

dx
ux

=
dy
uy

(30)

A good agreement is observed between the continuum mechanics prediction
and measured displacements of rod centers. Nevertheless, the discrete nature
of the material gives rise to uctuations around these mean displacements (see
below).

3.2 Rolling vs. sliding

Sliding and rolling occur at persistent contact points during deformation. At
a purely rolling contact the friction force f t is partially activated, i.e. f t �
�f n , where f n is the normal force and� is the coe�cient of friction. For two
contacting particles (Gn ) and (Gm ) at a point C, the condition of rolling
without sliding implies

~Vs(C) = f ~V(Om ) + ! m � ~Om Cg � f ~V(On ) + ! n � ~OnCg = 0 (31)
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Fig. 20. The network of rolling contacts in a simple shear test by the 1 2" setup.

whereVs(C) represents the sliding velocity at the contactC, and Om , On , ! m

and ! n are the centers and spin vectors of (Gn ) and (Gm ).

The contact point C corresponds to the superposition of two material points
attached to the two particles:Cn 2 (Gn ) and Cm 2 (Gm ). For the reference
con�guration, the contact point is C1 � Cn � Cm . For a deformed con�gura-
tion, the contact point C1 is replaced by another pointC2, and the material
points Cn and Cm at the boundaries of the two particles do not coincide any
more. Let us consider the oriented arc lengthsa = C2Cn and b = C2Cm . The
condition of rolling without sliding implies a + b = 0. This condition may be
used to detect rolling contacts from particle displacements and rotations in
experiments and numerical simulations (Lanier and Jean [2000], Oda et al.
[1982], Dedecker et al. [2000]). One example is shown in Fig. 20 in the case of
a shear test. We observe that most contacts are rolling (nearly 80%) and they
tend to point in the principal stress direction (45� in shear test).

In numerical simulations, the rolling contacts can be determined from the
condition f t < �f n , where f n is the normal force,f t is the tangential force
and � is the coe�cient of friction. An example is displayed in Fig. 21 where
the sliding contacts are marked in a sample of 4000 particles. Only, about 8%
of contacts are in the sliding state. In the same �gure, the weak and strong
force networks are shown (see below). It is remarkable that all sliding contacts
belong to the weak network, i.e. the contacts where the normal force is below
the mean force.
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Fig. 21. The force-bearing network of contacts in a biaxially compressed system of
4000 disks. The line thickness is proportional to the normalforce. The strong and
weak forces are shown in dark and light colors, respectively. The sliding contacts
are marked by small �lled circles.

3.3 Fluctuating displacement �elds

3.3.1 Uniform strain and uctuations

We consider here the particle displacements in slow 2D granular ows.The
displacements reect the loss of stability of the particles, resultingin transi-
tion to new equilibrium states. Hence, the displacements are intimately cor-
related with force uctuations in time (Bratberg et al. [2005], Taboada et al.
[2005]). As in the case of force chains, the macroscopic homogeneity of shear-
ing should be ensured in order to extract a meaningful statistics for intrinsic
uctuations. In simulations, this is achieved by means of periodic boundary
conditions (Radjai and Roux [2002, 2004]). The displacement �eld, however,
is not periodic if the mean strain is non-zero. In plane shear, it contains an
a�ne part �r i � (�r i

x ; �r i
y), where i is the particle label, in addition to a pe-

riodic uctuating �eld �s i � (�s i
x ; �s i

y) of zero mean (h�s i = 0). The physical
mechanism underlying the uctuating �eld �s i is the mismatch of the uni-
form strain �eld with mutual exclusions of the particles. As a result,the local
strains deviate from the mean (far-�eld) strain.

In the simulations with bi-periodic boundary conditions, the particlescan be
driven by imposing the a�ne component �r x

i = �tr i
y , where  is a constant

shear rate and�t is the time step. In other words, the Fourier modek = 0
of the total strain is imposed, corresponding to large scale forcing. Our focus
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Fig. 22. A snapshot of particle displacements�s i with respect to the mean back-
ground ow.

here is on the uctuating components (�s i
x ; �s i

y) in the steady state where
h�r y

i i ' 0.

Since we are interested in time scales beyond the elastic response time, the par-
ticle velocities should be evaluated from particle displacements. We consider
the periodic part of the velocity �eld, and we de�ne the uctuating velocities
vi as a function of the integration time� by

vi (t; t + � ) =
1
�

t+ �Z

t

�s i (t0) dt0 (32)

In steady ow, the statistical properties of v are independent oft although
they crucially depend on� . Although dynamic simulations involve the phys-
ical time, the inertial e�ects are negligible and the contact networkevolves
quasistatically at time scales well below � 1. We normalize all times by � 1

so that the dimensionless timet represents the cumulative shear strain. We
also use the mean particle diameterd to scale displacements. As a result, the
velocities will be scaled byd and the power spectra in space by (d2 )2.

Fig. 22 displays a snapshot of uctuating velocitiesvi for a short time lag
� = 10� 5 in the simulations. We observe that large-scale well-organized dis-
placements coexist with a strongly inhomogeneous distribution of amplitudes
and directions on di�erent scales. Convection rolls appear quite frequently,
but they survive typically for strains � less than 10� 3. After such short times,
large-scale rolls break down and new statistically uncorrelated structures ap-
pear. This behaviour is thus radically di�erent from turbulence eddies which
survive long enough to undergo a signi�cant distortion due to uid motion.
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Fig. 24. Averaged power spectrum of thex and y components of the uctuating
velocity �eld with � = 10 � 7 for one-dimensional cross sections along the mean ow.

3.3.2 Probability densities

An interesting issue is how the velocity distributions depend the on time res-
olution � . In uid turbulence, the phenomenon of intermittency, i.e. strong
localized energy transfers at small scales, leads to the broadeningof the expo-
nential tails of the distributions of velocity di�erences at increasingly smaller
scales. The distributions ofvi

y are shown in Fig.23 for a small integration time
� = 10� 3, and for a large integration time� = 10� 1. We see that thedistribu-
tion has changed from a nearly Gaussian shape at large� to a non-Gaussian
shape with broad stretched exponential tails extending nearly to the center
of the distribution at small � . This non-Gaussian broadening of the distribu-
tions as a function of� is observed also for the componentvx . The transition
toward a Gaussian distribution for large time lags is a sign of partial loss of
correlation and/or exhaustion of large uctuations (Radjai and Roux [2002]).
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3.3.3 Spatial correlations

The extent of spatial correlations may be estimated by consideringthe power
spectrumE of uctuating velocities along and perpendicular to the ow. The
averaged spectrum on one-dimensional cross sections of the sheared packing
is shown in Fig.24. The Fourier transform is performed over the uctuating
velocity �eld de�ned on a �ne grid by interpolating the velocities from particle
centers. The power spectra are quite similar along and perpendicular to the
ow, and for di�erent snapshots of the ow. They have a clear power-law
shapek� � ranging from the smallest wavenumberk = d=L, corresponding to
the system sizeL, up to a cut-o� around k = 0:5, corresponding to nearly two
particle diameters. The exponent is� ' 1:24 ' 5=4 over nearly one decade.
This means that the uctuating velocity �eld is self-a�ne.

The \intensity" of the velocity uctuations, de�ned as the ratio of the root
mean square displacement to the convective displacement of a particle, is
about 2%. This amount of displacement is, however, su�cient to modify the
kinematics in the vicinity of a particle, a local information that has a crucial
consequence for our description of the fabric evolution and plasticvolume
change in granular media.

3.3.4 Granulence

The transition of velocity distributions from stretched exponential to gaussian
as the time lag is increased and the power-law spectrum of the velocity �eld, as
well as the superdi�usive character of particle motion (not shown here), bear
a remarkable analogy with the scaling features of uid turbulence (Radjai
and Roux [2002]). Turbulence studies focus mainly on velocity di�erences�v
measured at a �xed point of a uid over a time interval � or between two
points separated by a distancer . This is in contrast with granular ow which
involves a discrete displacement �eld that is carried by individual particles.
Up to this di�erence in framework, the scaling properties discussedabove are
shared by turbulent uid ows. The power-law scaling k� � for the spectrum
of velocity di�erences is a hallmark of 3D turbulence with� ' 5=3 (to be
compared with � ' 5=4 in our granular ow).

The observed analogy between granular velocity uctuations and uid tur-
bulence in terms of scaling characteristics upgrades kinematic uctuations in
quasistatic granular ow to the rank of a systematic phenomenology which has
been coined by the term \granulence" as compared to \turbulence" in uid
dynamics. Remark that this analogy works with three-dimensional turbulence
although the simulation data concern a two-dimensional granular ow.

The uctuating velocities and their scaling behavior are important for mod-
eling the plastic behavior of granular materials from particle-scale considera-
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tions. The self-a�ne nature of particle displacement �elds means that uniform
strain in a granular ow is accommodated via correlations at all scales. This
behavior does not imply that velocity correlations extend to in�nity under
arbitrary boundary conditions. The observed scaling characteristics are a con-
sequence of uniform shear. An interesting consequence is that uniform strain
is easily disturbed as a result of the details of con�ning conditions or sym-
metry breaking agents such as a bulk force. In other words, disturbing the
long-range correlations leads to nonuniform behavior. This might bethe ori-
gin of the well-known property of granular materials to localize spontaneously
the strain.

3.4 Local and global strains

In continuum mechanics, the local strain is de�ned by the displacement gra-
dient at a given point of the material. The displacement �eld is assumedto be
a continuous function of the coordinates. In granular media, the particles are
not the volume elements of a continuum, and hence the local strain,i.e. the
strain at the particle scale, is not simply given by the gradient of the particle
displacement �eld. Only at larger scales, i.e. at the scale of a representative
volume element of the material, the mean macroscopic strain in the sense of
continuum mechanics can be de�ned. Here, we introduce a de�nitionof local
strains on the basis of particle neighborhood in the sense of adjacent cells of
a tessellation. We then use this de�nition to study strain localization.

3.4.1 Particle-scale strain

Let us consider a particle (G) and its neighbors (Gi ) with their centers Oi .
Let (L) be the polygonal line which connects the pointsOi and (S) the sur-
face of this polygon; see Fig. 25. As the pointsOi are material points, their
displacements are well de�ned. The mean value of the displacement gradient
is given by

h@� u� i =
1
S

Z

(S)

@� u� dS =
1
S

Z

(L )

u� n� d` (33)

where~n(n� ) is the unit normal vector of (L). To perform this integration, we
should extrapolate the displacements to all points of space sinceu� is known
only at the points Oi . Assuming a linear approximation along each side of the
polygon, we get

h@� u� i =
1

2S

N vX

k=1

n(k)
� (u(k)

� + u(k+1)
� )` (k) (34)
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Fig. 25. De�nition of local strain in the neighborhood of particle (G). The polygonal
line (L ) connects the centers of the neighboring particles according to the Dirichlet
cell (V ).

where ` (k) is the length of the side labelledk, n(k) is the unit normal of this
side, andu(k) and u(k+1) are the displacements of two successive corners. The
strain tensor associated with particle (G) is then the symmetric part ofh@� u� i .

It is worth noting that the expression [34] does not take into account the
particle rotations. On the other hand, it concerns only the immediate neigh-
borhood of each particle involving a volume of three particles which is far from
a representative volume element. As a consequence, this local strain should
rather be considered as a discrete measure of local deformation.Actually, the
macroscopic strain is de�ned through a similar approach with a polygonal line
(L) surrounding a representative volume element. The approximate linear size
of such a volume is of the order of 15 to 20 particles (Calvetti et al. [1997]).

3.4.2 Strain localization

Strain localization is an important topic of research in soil mechanics.In classi-
cal laboratory tests such as triaxial compression and plane straincompression,
the homogeneity of strain is necessary for the characterization of the material.
But in practice, it is virtually impossible to avoid the localization of straininto
shear bands. Incremental analysis of deformation by stereo-photogrammetry
shows that the strain is more or less homogeneous at the beginning of compres-
sion, but as the stress state approaches the peak stress, the strain concentrates
into shear bands (Desrues et al. [1983, 1996]). The thickness of the shear bands
is generally estimated to vary from 10 to 20 particle diameters in the case of
sand with narrow size distribution. It is also a general observation that strong
dilatancy occurs inside the shear bands if the material is initially dense.

In 2D experiments by the 1 2� apparatus, the local shear intensitiesE = "1� "2

can be evaluated from the local strains. Fig. 26 shows a map of localshear
intensities, represented by squares of size proportional toE, in biaxial com-
pression. We observe two main shear bands across the sample with reections
on the walls. The same system was simulated by means of the contactdynamics
method (Lanier and Jean [2000]). As shown in Fig. 27, a similar shear-banding
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Fig. 26. Strain localization in a biaxial compression test by the 1 2� apparatus. The
square size is proportional to the local shear intensity.

Fig. 27. Strain localization in a simulated biaxial compression with a sample whose
initial con�guration is the same as in the experiments (see Fig. 26). The square size
is proportional to the local shear intensity.

pattern in position and thickness is obtained if the initial particle con�guration
in the simulations is the same as in the experiments. An initial con�guration
even slightly di�erent from the experimental con�guration does not lead to
the same shear patterns. This sensitivity to the initial con�guration makes the
shear bands di�cult to predict.

4 Conclusion

Many concepts and notions developed in this report are currently used for the
description and modeling of granular media. For example, the fabric tensors
are important for the characterization of the texture. Some other aspects,
such as particle velocity uctuations, are less well known but they provide the
necessary information for a re�ned characterization of granularows. As far as
the relation between granular texture and quasi-static rheology isconcerned,
some hints were given. This is an active research area and one of thegoals

26



of the present book. The approach followed in this chapter was based on
the local vectors associated with a pair of contacting particles. The granular
texture was then described in terms of the statistical distributions and spatial
correlations of these vectors. However, in a statistical approach to the particle
equilibrium states, which underly the yield properties of a granular medium,
the fabric tensors are not su�cient. The description of the environment of
a particle requires multi-contact probability density functionsgc(~n1; : : : ; ~nc)
corresponding to the probability that the contact neighbours of aparticle
with c contact neighbors occupy the angular positions~n1; : : : ; ~nc around the
particle (Roux and Radjai [2001], Troadec et al. [2002]). Both the connectivity
function P(c) and gc are controlled by steric constraints of the particles, i.e.
mutual exclusions together with excluded-volume e�ects, that impose an upper
bound on the number of contact neighbors. In the same way, the ow behavior
involves a statistical characterization of void cells. We did not introduce these
aspects although interesting material can be found in the literature. Only basic
de�nitions, such as di�erent tessellation methods, were given as a �rst step
towards a statistical description at the mesoscopic scale.

We did not consider the important issue of disorder and its nature in granular
media. In particular, it is essential to distinguish between topological and
metric disorders because of the unilateral character of contactbetween rigid
particles. In granular media, the topological disorder, i.e. disorderrelated to
particle connectivity, is more fundamental. Moreover, the description of metric
disorder, i.e. the spatial correlations of particle positions, requires an extension
of classical functions such as pair correlation functions in order toaccount for
particle size polydispersity.

References

E. Az�ema, G. Saussine, and F. Radjai. Quasistatic rheology, force transmis-
sion and fabric properties of a packing of irregular polyhedral particles.
Mechanics of Materials, to appear., 2008.

Emilien Azma, Farhang Radja, Robert Peyroux, and Gilles Saussine. Force
transmission in a packing of pentagonal particles.Phys Rev E Stat Nonlin
Soft Matter Phys, 76(1 Pt 1):011301, Jul 2007.

K. Bagi. Stress and strain in granular assemblies.Mechanics of Materials, 22:
165{177, 1996.

I. Bratberg, F. Radjai, and A. Hansen. Intermittent ow of a collection of
rigid frictional disks in a vertical pipe. Phys. Rev. E, 71(1 Pt 1):011301,
Jan 2005. B.

F. Calvetti, G. Combe, and J. Lanier. Experimental micromechanical analysis
of a 2d granular material: relation between structure evolution andloading
path. Mech. Coh. Frict. Materials, 2:121{163, 1997.

27



B. Cambou. From global to local variables in granular materials. In C.Thorn-
ton, editor, Powders and Grains 93, pages 73{86, Amsterdam, 1993. A. A.
Balkema.

F. Dedecker, M. Chaze, Ph. Dubujet, and B. Cambou. Speci�c features of
strain in granular materials. Mech. Coh. Frict. Materials, 5:173{193, 2000.

. Desrues, J. Lanier, and P. Stutz. Localization of deformation in tests on sand
samples.Eng. Fracture Mechanics, 21:p909{921, 1983.

J. Desrues, R. Chambon, M. Mokni, and F. Mazerolles. Void ratio evolution
inside shear band in triaxial sand specimens studied by computed tomog-
raphy. G�eotechnique, 46:529{546, 1996.

K. I. Kanatani. Distribution of directional data and fabric tensors. Int. J.
Ingng. Sci, 22:149{164, 1984.

J. Lanier and M. Jean. Experiments and numerical simulations with 2ddisks
assembly.Powder Technology, 109:206{221, 2000.

M. Oda and K. Iwashita, editors. Mechanics of Granular Materials. A. A.
Balkema, Rotterdam, 1999.

M. Oda, J. Koshini, and S. Nemat-Nasser. Some experimentally based funda-
mental results on the mechanical behavior of granular materials.Geotech-
nique, 30:479{495, 1980.

M. Oda, J. Konishi, and S. Nemat-Nasser. Experimental micromechanical
evaluation of strength of granular materials: e�ects of particle rolling. Me-
chanics of Materials, 1:269{283, 1982.

H. Ouadfel and L. Rothenburg. Stress-force-fabric relationship for assemblies
of ellipsoids. Mechanics of Materials, 33(4):201{221, 2001.

F. Radjai and S. Roux. Contact dynamics study of 2d granular media : Critical
states and relevant internal variables. In H. Hinrichsen and D. E. Wolf,
editors, The Physics of Granular Media, pages 165{186, Weinheim, 2004.
Wiley-VCH.

F. Radjai, H. Troadec, and S. Roux. Key features of granular plasticity. In S.J.
Antony, W. Hoyle, and Y. Ding, editors, Granular Materials: Fundamentals
and Applications, pages 157{184, Cambridge, 2004. RS.C.

Farhang Radjai and Stphane Roux. Turbulentlike uctuations in quasistatic
ow of granular media. Phys Rev Lett, 89(6):064302, Aug 2002.

L. Rothenburg and R. J. Bathurst. Analytical study of induced anisotropy in
idealized granular materials.Geotechnique, 39:601{614, 1989.

S. Roux and F. Radjai. Statistical approach to the mechanical behavior of
granular media. In H. Aref and J.W. Philips, editors,Mechanics for a New
Millennium, pages 181{196, Netherlands, 2001. Kluwer Acad. Pub.

M. Satake. Fabric tensor in granular materials. In P. A. Vermeer and H. J.
Luger, editors, Proceedings of the IUTAM symposium on deformation and
failure of granular materials, Delft, pages 63{68, Amsterdam, 1982. A. A.
Balkema.

A. Taboada, K. J. Chang, F. Radjai, and F. Bouchette. Rheology,force trans-
mission, and shear instabilities in frictional granular media from biaxial
numerical test using the contact dynamics method.Journal Of Geophysical

28



Research, 110:1{24, 2005.
H. Troadec, F. Radjai, S. Roux, and J.C. Charmet. Model for granular texture

with steric exclusion. Physical Review E, 66(4 1):041305{1, 2002. ISSN
1063-651X.

Charles Voivret. Texture et comportement des mat�eriaux granulaires �a grande
polydispersit�e. PhD thesis, Universit�e Montpellier 2, 2008.

29


